在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

DeepMind綜述無監(jiān)督學(xué)習(xí):通用智能路上的踏腳石,讓AI更聰明

人工智能和機(jī)器人研究院 ? 來源:YXQ ? 2019-04-27 09:37 ? 次閱讀

在過去十年中,機(jī)器學(xué)習(xí)在圖像識(shí)別、自動(dòng)駕駛汽車和圍棋等領(lǐng)域取得了前所未有的進(jìn)步。這些成功在很大程度上是靠監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)來實(shí)現(xiàn)的。

這兩種方法都要求由人設(shè)計(jì)訓(xùn)練信號(hào)并傳遞給計(jì)算機(jī)。在監(jiān)督學(xué)習(xí)的情況下,這些是“目標(biāo)”(例如圖像的正確標(biāo)簽); 在強(qiáng)化學(xué)習(xí)的情況下,它們是成功行為的“獎(jiǎng)勵(lì)”(例如在Atari游戲中獲得高分)。因此,機(jī)器學(xué)習(xí)的極限是由人類訓(xùn)練師決定的。

但是學(xué)習(xí)知識(shí)還應(yīng)該有其他的策略,就像讓幼兒學(xué)習(xí),不僅有指導(dǎo)(監(jiān)督學(xué)習(xí))和鼓勵(lì)(強(qiáng)化學(xué)習(xí)),還應(yīng)該有自由探索世界(無監(jiān)督學(xué)習(xí))。如果要讓AI脫離人類發(fā)展成出通用智能,必須要讓它掌握無監(jiān)督學(xué)習(xí)的技能。

DeepMind今天在官方博客中對無監(jiān)督學(xué)習(xí)的原理、近年來取得的成果、發(fā)展前景進(jìn)行了綜述。

無監(jiān)督學(xué)習(xí)關(guān)鍵的特點(diǎn)是,傳遞給算法的數(shù)據(jù)在內(nèi)部結(jié)構(gòu)中非常豐富,而用于訓(xùn)練的目標(biāo)和獎(jiǎng)勵(lì)非常稀少。無監(jiān)督學(xué)習(xí)算法學(xué)到的大部分內(nèi)容必須包括理解數(shù)據(jù)本身,而不是將這種理解應(yīng)用于特定任務(wù)。

解碼視覺元素

2012年是深度學(xué)習(xí)的里程碑,AlexNet席卷了ImageNet圖像分類競賽,但是更引人注目的是藏在AlexNet之下的事情。

研究人員在分析AlexNet時(shí)發(fā)現(xiàn),它通過為輸入構(gòu)建復(fù)雜的內(nèi)部表示來解釋圖像,低層次的特征,如紋理和邊緣在底層中表示,然后將它們組合在一起形成高級概念,例如更高層次中的輪子和狗。

這與我們的大腦中處理信息的方式非常相似,其中初級感官處理區(qū)域中的簡單邊緣和紋理,然后組裝成復(fù)雜對象。因此復(fù)雜場景的表示可以由“視覺基元”所構(gòu)建,這種方式與單詞構(gòu)成句子大致相同。

在沒有人類明確的指導(dǎo)的情況下,研究人員發(fā)現(xiàn)AlexNet的層可以通過基本的“視覺詞匯”來解決任務(wù)。

遷移學(xué)習(xí)

AlexNet還可以被遷移到訓(xùn)練之外的視覺任務(wù)中,例如識(shí)別整個(gè)場景而不是單個(gè)圖像。

人類就非常擅長這種學(xué)習(xí)方法,我們能迅速調(diào)整自己的經(jīng)驗(yàn),以適應(yīng)新的技能和理解收集到的信息。例如,經(jīng)過專業(yè)訓(xùn)練的鋼琴家可以相對輕松地掌握彈奏爵士鋼琴的方法。

理論上,構(gòu)成世界正確內(nèi)部表征的智能體應(yīng)該能夠做同樣的事情。

但是AlexNet等分類器所學(xué)到的表示仍具有局限性,特別是網(wǎng)絡(luò)只用單一類別標(biāo)記圖像訓(xùn)練時(shí),那些推斷標(biāo)簽時(shí)用不上的信息 ,無論它在其他任務(wù)中用處多大,都可能被網(wǎng)絡(luò)所忽略。如果標(biāo)簽總是指向前景,則表示可能無法獲取圖像的背景。

一種可能的解決方案是提供更全面的訓(xùn)練信號(hào),比如描述圖像的詳細(xì)內(nèi)容,不單單把圖像描述成“狗”,而是“柯基犬在陽光明媚的公園里叼飛盤”。

但是,這些信息很難大規(guī)模提供,而且這樣做仍然有可能不足以捕獲完成任務(wù)所需的全部信息。

無監(jiān)督學(xué)習(xí)的基本前提是學(xué)習(xí)豐富、可廣泛轉(zhuǎn)移表示的最佳方式,這種方式可以學(xué)習(xí)關(guān)于數(shù)據(jù)的全部內(nèi)容。

如果你覺得轉(zhuǎn)移的概念看起來過于抽象,那么請想象一個(gè)學(xué)習(xí)簡筆畫的孩子。她發(fā)現(xiàn)了人體形態(tài)的特征。通過增加具體細(xì)節(jié),她可以為她的所有同學(xué)繪制肖像,加上眼鏡、紅色T恤的同桌等等。

她發(fā)展出這項(xiàng)技能不是為了完成一項(xiàng)特定任務(wù)或獲得獎(jiǎng)勵(lì),而是為了反映她描繪周圍世界的基本要求。

生成模型和GAN

無監(jiān)督學(xué)習(xí)的最簡單目標(biāo)是訓(xùn)練算法生成自己的數(shù)據(jù)實(shí)例,但是模型不應(yīng)該簡單地重現(xiàn)之前訓(xùn)練的數(shù)據(jù),否則就是簡單的記憶行為。

它必須是建立一個(gè)從數(shù)據(jù)中的基礎(chǔ)類模型。不是生成特定的馬或彩虹照片,而是生成馬和彩虹的圖片集;不是來自特定發(fā)言者的特定話語,而是說出話語的一般分布。

生成模型的指導(dǎo)原則是,能夠構(gòu)建一個(gè)令人信服的數(shù)據(jù)示例是理解它的最有力證據(jù)。正如物理學(xué)家理查德·費(fèi)曼所說:“我不能創(chuàng)造的東西,我就不能了解”(What I cannot create, I do not understand.)。

對于圖像來說,迄今為止最成功的生成模型是生成對抗網(wǎng)絡(luò)(GAN)。它由兩個(gè)網(wǎng)絡(luò)組成:一個(gè)生成器和一個(gè)鑒別器,分別負(fù)責(zé)偽造圖片和識(shí)別真假。

生成器產(chǎn)生圖像的目的是誘使鑒別者相信它們是真實(shí)的,同時(shí),鑒別者會(huì)因?yàn)榘l(fā)現(xiàn)假圖片而獲得獎(jiǎng)勵(lì)。

GAN開始生成的圖像是雜亂的和隨機(jī)的,在許多次迭代中被細(xì)化,形成更加逼真的圖像,甚至無法與真實(shí)照片區(qū)別開來。最近英偉達(dá)的GauGAN還能根據(jù)用戶草圖生成圖片。

通過預(yù)測創(chuàng)建內(nèi)容

無監(jiān)督學(xué)習(xí)中另一個(gè)值得注意的成員是自回歸模型,它把數(shù)據(jù)分成一系列小片段,每個(gè)片段依次被預(yù)測。這些模型可以通過連續(xù)猜測接下來會(huì)發(fā)生什么來作為輸入,并能夠再次生成猜測數(shù)據(jù)。

在語言模型中,每個(gè)單詞都是從它之前的單詞預(yù)測出來的。它能夠支持在電子郵件和消息應(yīng)用程序中彈出的文本預(yù)測內(nèi)容。

最近OpenAI公布的GPT-2模型還能能夠生成以假亂真的文字段落。

通過控制用于調(diào)節(jié)輸出預(yù)測的輸入序列,自回歸模型也能用于將一個(gè)序列轉(zhuǎn)換為另一個(gè)序列。例如將文本轉(zhuǎn)換為逼真的手寫體、自然的語音,還能將一種語言翻譯成另一種語言。

自回歸模型以預(yù)測特定順序數(shù)據(jù)的方式來理解數(shù)據(jù)。通過預(yù)測任何其他數(shù)據(jù)的任何部分,可以構(gòu)建更一般的無監(jiān)督學(xué)習(xí)算法。

例如從句子中刪除一個(gè)單詞,并試圖從剩余的內(nèi)容中預(yù)測它。通過學(xué)習(xí)進(jìn)行大量局部預(yù)測,系統(tǒng)被迫從整體上理解數(shù)據(jù)。

生成模型的出現(xiàn)讓人們產(chǎn)生了一種擔(dān)憂,就是它們可能被濫用。雖然通過照片、視頻音頻編輯操縱證據(jù)歷史已久,但生成模型讓惡意編輯媒體內(nèi)容變得更加容易。一個(gè)知名的“deepfakes”范例是奧巴馬演講視頻片段。

令人鼓舞的是,人們已經(jīng)做出了面對這些挑戰(zhàn)的努力,包括利用統(tǒng)計(jì)技術(shù)幫助檢測偽造內(nèi)容和驗(yàn)證真實(shí)內(nèi)容、提高公眾意識(shí)、以及圍繞限制生成模型使用范圍展開討論。

生成模型本身也能用在檢測偽造內(nèi)容和異常數(shù)據(jù)。例如,檢測虛假語音或識(shí)別支付異常,保護(hù)客戶免受欺詐。研究人員需要研究生成模型,以便更好地理解它們并降低風(fēng)險(xiǎn)。

實(shí)現(xiàn)通用智能

生成模型本身很吸引人,DeepMind的主要興趣是用它作為通用智能的踏腳石。賦予智能體生成數(shù)據(jù)的能力是一種賦予其想象力的方式,從而能夠規(guī)劃和推理未來。

DeepMind的研究表明,即使沒有明確的生成數(shù)據(jù),學(xué)習(xí)預(yù)測環(huán)境的不同方面可以豐富智能體的世界模型,從而提高其解決問題的能力。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    31613

    瀏覽量

    270422
  • DeepMind
    +關(guān)注

    關(guān)注

    0

    文章

    131

    瀏覽量

    10949

原文標(biāo)題:DeepMind綜述無監(jiān)督學(xué)習(xí):通用智能路上的踏腳石,讓AI更聰明

文章出處:【微信號(hào):gh_ecbcc3b6eabf,微信公眾號(hào):人工智能和機(jī)器人研究院】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    谷歌加速AI部門整合:AI Studio團(tuán)隊(duì)并入DeepMind

    近日,谷歌正緊鑼密鼓地推進(jìn)其人工智能(AI)部門的整合工作。據(jù)谷歌AI Studio主管Logan Kilpatrick在領(lǐng)英頁面上的透露,谷歌已將AI Studio團(tuán)隊(duì)整體轉(zhuǎn)移至
    的頭像 發(fā)表于 01-13 14:40 ?257次閱讀

    AI變得聰明,他這樣訓(xùn)練和改造AI

    積極面,湘江新區(qū)融媒體中心聯(lián)合新區(qū)民政和社會(huì)保障局(退役軍人事務(wù)局)特別策劃“崗位代言人”欄目,以進(jìn)一步提升大學(xué)生就業(yè)認(rèn)知,探索就業(yè)的更多可能。大數(shù)據(jù)時(shí)代,AI如颶
    的頭像 發(fā)表于 01-09 17:51 ?446次閱讀
    <b class='flag-5'>讓</b><b class='flag-5'>AI</b>變得<b class='flag-5'>更</b><b class='flag-5'>聰明</b>,他這樣訓(xùn)練和改造<b class='flag-5'>AI</b>

    時(shí)空引導(dǎo)下的時(shí)間序列自監(jiān)督學(xué)習(xí)框架

    【導(dǎo)讀】最近,香港科技大學(xué)、上海AI Lab等多個(gè)組織聯(lián)合發(fā)布了一篇時(shí)間序列監(jiān)督預(yù)訓(xùn)練的文章,相比原來的TS2Vec等時(shí)間序列表示學(xué)習(xí)工作,核心在于提出了將空間信息融入到預(yù)訓(xùn)練階段,
    的頭像 發(fā)表于 11-15 11:41 ?338次閱讀
    時(shí)空引導(dǎo)下的時(shí)間序列自<b class='flag-5'>監(jiān)督學(xué)習(xí)</b>框架

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    人工智能在科學(xué)研究中的核心技術(shù),包括機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)等。這些技術(shù)構(gòu)成了AI for Science的基石,使得AI能夠處理和分析
    發(fā)表于 10-14 09:16

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第一章人工智能驅(qū)動(dòng)的科學(xué)創(chuàng)新學(xué)習(xí)心得

    ,無疑為讀者鋪設(shè)了一條探索人工智能AI)如何深刻影響并推動(dòng)科學(xué)創(chuàng)新的道路。在閱讀這一章后,我深刻感受到了人工智能技術(shù)在科學(xué)領(lǐng)域的廣泛應(yīng)用潛力以及其帶來的革命性變化,以下是我個(gè)人的學(xué)習(xí)
    發(fā)表于 10-14 09:12

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)知識(shí)學(xué)習(xí)

    收集海量的文本數(shù)據(jù)作為訓(xùn)練材料。這些數(shù)據(jù)集不僅包括語法結(jié)構(gòu)的學(xué)習(xí),還包括對語言的深層次理解,如文化背景、語境含義和情感色彩等。 自監(jiān)督學(xué)習(xí):模型采用自監(jiān)督學(xué)習(xí)策略,在大量標(biāo)簽文本數(shù)據(jù)
    發(fā)表于 08-02 11:03

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)篇

    章節(jié)最后總結(jié)了機(jī)器學(xué)習(xí)的分類:有監(jiān)督學(xué)習(xí)監(jiān)督學(xué)習(xí)、半監(jiān)督學(xué)習(xí)、自監(jiān)督學(xué)習(xí)和強(qiáng)化
    發(fā)表于 07-25 14:33

    神經(jīng)網(wǎng)絡(luò)如何用監(jiān)督算法訓(xùn)練

    神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的重要組成部分,其訓(xùn)練方式多樣,其中監(jiān)督學(xué)習(xí)是一種重要的訓(xùn)練策略。監(jiān)督學(xué)習(xí)旨在從未標(biāo)記的數(shù)據(jù)中發(fā)現(xiàn)數(shù)據(jù)內(nèi)在的結(jié)構(gòu)、模
    的頭像 發(fā)表于 07-09 18:06 ?901次閱讀

    深度學(xué)習(xí)中的監(jiān)督學(xué)習(xí)方法綜述

    應(yīng)用中往往難以實(shí)現(xiàn)。因此,監(jiān)督學(xué)習(xí)在深度學(xué)習(xí)中扮演著越來越重要的角色。本文旨在綜述深度學(xué)習(xí)中的
    的頭像 發(fā)表于 07-09 10:50 ?963次閱讀

    基于FPGA的類腦計(jì)算平臺(tái) —PYNQ 集群的監(jiān)督圖像識(shí)別類腦計(jì)算系統(tǒng)

    STDP 監(jiān)督學(xué)習(xí)算法,可運(yùn)用于圖像的 監(jiān)督分類。 從平臺(tái)設(shè)計(jì)角度: (1)本設(shè)計(jì)搭建的基于 PYNQ 集群的通用低功耗的大規(guī)
    發(fā)表于 06-25 18:35

    **十萬級口語識(shí)別,離線自然說技術(shù),智能照明懂你**

    固定詞條等。針對這些問題,啟英泰倫現(xiàn)已推出成熟的可應(yīng)用于照明設(shè)備的離線自然說方案,該方案已在多家智能照明廠商最新產(chǎn)品上實(shí)現(xiàn)應(yīng)用落地。 照明離線自然說方案采用啟英泰倫第三代AI語音芯片(芯片F(xiàn)lash
    發(fā)表于 04-29 17:09

    谷歌DeepMind推出SIMI通用AI智能

    近日,谷歌的DeepMind團(tuán)隊(duì)發(fā)布了其最新研究成果——SIMI(Scalable Instructable Multiworld Agent),這是一個(gè)通用人工智能智能體,能夠在多種3D虛擬環(huán)境
    的頭像 發(fā)表于 03-18 11:39 ?1064次閱讀

    馬斯克:明年AI將比任何人都聰明

    OpenAI的大模型大家看到了通用人工智能(AGI)的強(qiáng)大,人工智能技術(shù)的發(fā)展速度也很多人側(cè)目。 馬斯克在X上發(fā)表預(yù)測道:“明年人工智能
    的頭像 發(fā)表于 03-14 15:46 ?494次閱讀

    智慧路燈桿AI監(jiān)測應(yīng)用,高速出行安全

    針對更好監(jiān)測和管理高速公路上的交通狀況,可以基于智慧路燈桿打造AI交通監(jiān)測應(yīng)用,通過智能感知高速路段的路況、車況、環(huán)境狀況,實(shí)現(xiàn)實(shí)時(shí)風(fēng)險(xiǎn)感知、風(fēng)險(xiǎn)預(yù)警和協(xié)同處置,高速出行
    的頭像 發(fā)表于 03-11 17:20 ?485次閱讀
    智慧路燈桿<b class='flag-5'>AI</b>監(jiān)測應(yīng)用,<b class='flag-5'>讓</b>高速出行<b class='flag-5'>更</b>安全

    OpenAI推出Sora:AI領(lǐng)域的革命性突破

    大模型的核心技術(shù)是自然語言處理(NLP)和深度學(xué)習(xí)。具體而言,它基于Transformer架構(gòu),使用了大規(guī)模監(jiān)督學(xué)習(xí)方法,例如自回歸語言建模和掩碼語言建模,來訓(xùn)練一個(gè)龐大的神經(jīng)網(wǎng)絡(luò)模型。
    發(fā)表于 02-21 16:36 ?1058次閱讀
    OpenAI推出Sora:<b class='flag-5'>AI</b>領(lǐng)域的革命性突破
    主站蜘蛛池模板: 午夜色a大片在线观看免费 午夜色大片在线观看 | 亚洲电影一区二区 | 亚洲一级视频在线观看 | 在线播放黄色网址 | 日本精品卡一卡2卡3卡四卡三卡 | 亚洲午夜视频 | 免费一级毛片在线播放 | 四虎国产精品免费观看 | 韩国特黄特色a大片免费 | 亚洲 成人 欧美 自拍 | 久久精品国产福利国产琪琪 | 色视频网 | 天堂网在线.www天堂在线资源 | 色丁香在线观看 | 速度与激情10 | 国产小视频网站 | 亚洲春色www | 天天爱天天插 | 国产精品成人一区二区 | 丝袜美女被c | 三级网在线 | 2020av在线| 日本成人在线网址 | 色偷偷免费视频 | 男人午夜小视频 | 免费黄色大片网站 | 九色窝| 日本人的xxxxxxxxx69 | 97天天做天天爱夜夜爽 | 五月婷婷影院 | 精品精品国产理论在线观看 | 中文字幕一区二区三区四区五区 | 黄色成人在线 | 欧美性白人极品1819hd | 亚洲一级特黄 | 天天操天天干天天 | 欧美日韩视频综合一区无弹窗 | 在线观看色视频网站 | 大黄网站色多多 | 日本一区二区高清免费不卡 | 男女性接交无遮挡免费看视频 |