在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>處理器/DSP>DeepScale的解決方案是深度神經(jīng)網(wǎng)絡(luò)傳感器的融合組成

DeepScale的解決方案是深度神經(jīng)網(wǎng)絡(luò)傳感器的融合組成

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

評論

查看更多

相關(guān)推薦

深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)架構(gòu)解析

感知器是所有神經(jīng)網(wǎng)絡(luò)中最基本的,也是更復(fù)雜的神經(jīng)網(wǎng)絡(luò)的基本組成部分。它只連接一個(gè)輸入神經(jīng)元和一個(gè)輸出神經(jīng)元。
2023-08-31 16:55:50671

詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

在如今的網(wǎng)絡(luò)時(shí)代,錯(cuò)綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進(jìn)人們的視線,通過深度學(xué)習(xí)解決若干問題的案例越來越多。一些傳統(tǒng)的圖像
2024-01-11 10:51:32596

深度神經(jīng)網(wǎng)絡(luò)是什么

多層感知機(jī) 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22

神經(jīng)模糊控制在SAW壓力傳感器溫度補(bǔ)償中的應(yīng)用

,特別是溫度的影響是測量誤差的主要,為保證SAW壓力傳感器高準(zhǔn)確度和高靈敏度測量,必須進(jìn)行有效的溫度補(bǔ)償。本文將神經(jīng)網(wǎng)絡(luò)和模糊控制技術(shù)相結(jié)合,對SAW壓力傳感器進(jìn)行智能化溫度補(bǔ)償,通過此方法進(jìn)行的改進(jìn)
2018-10-24 11:36:52

神經(jīng)網(wǎng)絡(luò)解決方案讓自動(dòng)駕駛成為現(xiàn)實(shí)

、成本及功耗的要求。輕型嵌入式神經(jīng)網(wǎng)絡(luò)卷積式神經(jīng)網(wǎng)絡(luò) (CNN) 的應(yīng)用可分為三個(gè)階段:訓(xùn)練、轉(zhuǎn)化及 CNN 在生產(chǎn)就緒解決方案中的執(zhí)行。要想獲得一個(gè)高性價(jià)比、針對大規(guī)模車輛應(yīng)用的高效結(jié)果,必須在每階段
2017-12-21 17:11:34

神經(jīng)網(wǎng)絡(luò)和反向傳播算法

03_深度學(xué)習(xí)入門_神經(jīng)網(wǎng)絡(luò)和反向傳播算法
2019-09-12 07:08:05

神經(jīng)網(wǎng)絡(luò)基本介紹

神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

  第1章 概述  1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展  1.2 生物神經(jīng)元  1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成  第2章人工神經(jīng)網(wǎng)絡(luò)基本模型  2.1 MP模型  2.2 感知模型  2.3 自適應(yīng)線性
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)移植到STM32的方法

神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
2022-01-11 06:20:53

神經(jīng)網(wǎng)絡(luò)簡介

神經(jīng)網(wǎng)絡(luò)簡介
2012-08-05 21:01:08

神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索有什么優(yōu)勢?

近年來,深度學(xué)習(xí)的繁榮,尤其是神經(jīng)網(wǎng)絡(luò)的發(fā)展,顛覆了傳統(tǒng)機(jī)器學(xué)習(xí)特征工程的時(shí)代,將人工智能的浪潮推到了歷史最高點(diǎn)。然而,盡管各種神經(jīng)網(wǎng)絡(luò)模型層出不窮,但往往模型性能越高,對超參數(shù)的要求也越來越嚴(yán)格
2019-09-11 11:52:14

神經(jīng)網(wǎng)絡(luò)資料

基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05

ADI無線傳感器網(wǎng)絡(luò)(WSN)解決方案

附件ADI 無線傳感器網(wǎng)絡(luò)(WSN) 解決方案.rar453.1 KB
2018-10-17 15:25:12

AI知識(shí)科普 | 從無人相信到萬人追捧的神經(jīng)網(wǎng)絡(luò)

的過程。2、人工神經(jīng)網(wǎng)絡(luò)組成一個(gè)典型的神經(jīng)網(wǎng)絡(luò),由成百上千萬的人工神經(jīng)元構(gòu)成,他們排列在一系列的層中,每個(gè)層之間彼此相連。基本上由三個(gè)相互連接的層組成:輸入層、隱藏層和輸出層。組成結(jié)構(gòu)圖如下所示:由上圖
2018-06-05 10:11:50

MATLAB神經(jīng)網(wǎng)絡(luò)

MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13

[分享]多傳感器數(shù)據(jù)融合理論及應(yīng)用

本帖最后由 srxh 于 2015-12-7 23:19 編輯 講多傳感器數(shù)據(jù)融合技術(shù),可參考下,拓展我們的系統(tǒng)構(gòu)架、優(yōu)化系統(tǒng)算法主要內(nèi)容:數(shù)據(jù)融合算法、融合結(jié)構(gòu),貝葉斯推理、Dempster_Shasher算法、人工神經(jīng)網(wǎng)絡(luò)、模糊邏輯和模糊神經(jīng)網(wǎng)絡(luò)。老外的書,比較經(jīng)典!
2015-12-07 22:52:50

labview BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)

請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08

【PYNQ-Z2試用體驗(yàn)】基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動(dòng)駕駛小車 - 項(xiàng)目規(guī)劃

上的USB攝像頭作為主要傳感器,采集得到的前方道路圖像經(jīng)過數(shù)據(jù)預(yù)處理后,接入神經(jīng)網(wǎng)絡(luò)的輸入層,由神經(jīng)網(wǎng)絡(luò)的輸出層狀態(tài)將生成控制信號(hào),控制小車的直走、左轉(zhuǎn)、右轉(zhuǎn)、與停止。交通標(biāo)識(shí)識(shí)別功能同樣使用USB
2019-03-02 23:10:52

【專輯精選】人工智能之神經(jīng)網(wǎng)絡(luò)教程與資料

電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個(gè)主題為一期,希望對各位有所幫助!(點(diǎn)擊標(biāo)題即可進(jìn)入頁面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門資料MATLAB神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)》深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺不是很難,只不過一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競爭學(xué)習(xí)的一個(gè)代表,競爭型學(xué)習(xí)
2019-07-21 04:30:00

【案例分享】基于BP算法的前饋神經(jīng)網(wǎng)絡(luò)

`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含一個(gè)隱層的BP神經(jīng)網(wǎng)絡(luò)模型(兩層神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實(shí)由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00

人工神經(jīng)網(wǎng)絡(luò)原理及下載

人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識(shí)過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個(gè)“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42

人工神經(jīng)網(wǎng)絡(luò)傳感器數(shù)據(jù)融合中的應(yīng)用

人工神經(jīng)網(wǎng)絡(luò)傳感器數(shù)據(jù)融合中的應(yīng)用針對壓力傳感器對溫度的交叉靈敏度,采用BP 人工神經(jīng)網(wǎng)絡(luò)法對其進(jìn)行數(shù)據(jù)融合處理,消除溫度對壓力傳感器的影響,大大提高了傳感器的穩(wěn)定性及其精度,效果良好。關(guān)鍵詞
2009-08-11 20:23:46

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

人臉識(shí)別、語音翻譯、無人駕駛...這些高科技都離不開深度神經(jīng)網(wǎng)絡(luò)了!

,如何用一個(gè)神經(jīng)網(wǎng)絡(luò),寫出一套機(jī)器學(xué)習(xí)算法,來自動(dòng)識(shí)別未知的圖像。一個(gè) 4 層的神經(jīng)網(wǎng)絡(luò)輸入層經(jīng)過幾層算法得到輸出層 實(shí)現(xiàn)機(jī)器學(xué)習(xí)的方法有很多,近年被人們討論得多的方法就是深度學(xué)習(xí)。 深度學(xué)習(xí)是一種實(shí)現(xiàn)
2018-05-11 11:43:14

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

從AlexNet到MobileNet,帶你入門深度神經(jīng)網(wǎng)絡(luò)

思維導(dǎo)圖如下:發(fā)展歷程DNN-定義和概念在卷積神經(jīng)網(wǎng)絡(luò)中,卷積操作和池化操作有機(jī)的堆疊在一起,一起組成了CNN的主干。同樣是受到獼猴視網(wǎng)膜與視覺皮層之間多層網(wǎng)絡(luò)的啟發(fā),深度神經(jīng)網(wǎng)絡(luò)架構(gòu)架構(gòu)應(yīng)運(yùn)而生,且
2018-05-08 15:57:47

使用keras搭建神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)基于深度學(xué)習(xí)算法的股票價(jià)格預(yù)測

本文使用keras搭建神經(jīng)網(wǎng)絡(luò),實(shí)現(xiàn)基于深度學(xué)習(xí)算法的股票價(jià)格預(yù)測。本文使用的數(shù)據(jù)來源為tushare,一個(gè)免費(fèi)開源接口;且只取開票價(jià)進(jìn)行預(yù)測。import numpy as npimport
2022-02-08 06:40:03

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42

卷積神經(jīng)網(wǎng)絡(luò)CNN介紹

深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37

卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實(shí)例探究及學(xué)習(xí)總結(jié)

深度學(xué)習(xí)工程師-吳恩達(dá)》03卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實(shí)例探究 學(xué)習(xí)總結(jié)
2020-05-22 17:15:57

卷積神經(jīng)網(wǎng)絡(luò)一維卷積的處理過程

以前的神經(jīng)網(wǎng)絡(luò)幾乎都是部署在云端(服務(wù)上),設(shè)備端采集到數(shù)據(jù)通過網(wǎng)絡(luò)發(fā)送給服務(wù)做inference(推理),結(jié)果再通過網(wǎng)絡(luò)返回給設(shè)備端。如今越來越多的神經(jīng)網(wǎng)絡(luò)部署在嵌入式設(shè)備端上,即
2021-12-23 06:16:40

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用轉(zhuǎn)載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學(xué)習(xí)是機(jī)器學(xué)習(xí)和人工智能研究的最新趨勢,作為一個(gè)
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機(jī)器學(xué)習(xí)?

列文章將只關(guān)注卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN的主要應(yīng)用領(lǐng)域是輸入數(shù)據(jù)中包含的對象的模式識(shí)別和分類。CNN是一種用于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò)。此類網(wǎng)絡(luò)由一個(gè)輸入層、多個(gè)卷積層和一個(gè)輸出層組成。卷積層是最重
2023-02-23 20:11:10

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理上實(shí)現(xiàn)關(guān)鍵詞識(shí)別

我們可以對神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行優(yōu)化,使之適配微控制的內(nèi)存和計(jì)算限制范圍,并且不會(huì)影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理上實(shí)現(xiàn)關(guān)鍵詞識(shí)別的潛力。關(guān)鍵詞識(shí)別
2021-07-26 09:46:37

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)

【新技術(shù)發(fā)布】基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署激光雷達(dá)可以準(zhǔn)確地完成三維空間的測量,具有抗干擾能力強(qiáng)、信息豐富等優(yōu)點(diǎn),但受限于數(shù)據(jù)量大、不規(guī)則等難點(diǎn),基于深度神經(jīng)網(wǎng)絡(luò)
2021-12-21 07:59:18

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署
2021-01-04 06:26:23

基于神經(jīng)網(wǎng)絡(luò)融合傳感器怎么消除溫度誤差?

數(shù)據(jù)融合方式消除溫度誤差。構(gòu)建了多傳感器融合模型,選用徑向基函數(shù)(Radial Basis Function,RBF)網(wǎng)絡(luò)對磁敏傳感器和溫度傳感器的輸出進(jìn)行融合,并通過實(shí)驗(yàn)驗(yàn)證了該方法的有效性。檢測系統(tǒng)的準(zhǔn)確度和穩(wěn)定性有了明顯的提高。
2020-03-06 08:16:48

基于ARM的多傳感器信息融合在工業(yè)控制中的應(yīng)用

  0 引言  現(xiàn)代工業(yè)生產(chǎn)以綜合、復(fù)雜、大型、連續(xù)為特點(diǎn),采用大量傳感器來監(jiān)測和控制生產(chǎn)過程。多傳感器系統(tǒng)的出現(xiàn)導(dǎo)致信息量劇增,采用信息融合技術(shù)可更有效地利用信息資源。在復(fù)雜的工業(yè)控制系統(tǒng)中,控制
2018-11-12 10:49:55

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

神經(jīng)網(wǎng)絡(luò)可以建立參數(shù)Kp,Ki,Kd自整定的PID控制。基于BP神經(jīng)網(wǎng)絡(luò)的PID控制系統(tǒng)結(jié)構(gòu)框圖如下圖所示:控制由兩部分組成:經(jīng)典增量式PID控制;BP神經(jīng)網(wǎng)絡(luò)...
2021-09-07 07:43:47

基于BP神經(jīng)網(wǎng)絡(luò)的手勢識(shí)別系統(tǒng)

  摘 要:本文給出了采用ADXL335加速度傳感器來采集五個(gè)手指和手背的加速度三軸信息,并通過ZigBee無線網(wǎng)絡(luò)傳輸來提取手勢特征量,同時(shí)利用BP神經(jīng)網(wǎng)絡(luò)算法進(jìn)行誤差分析來實(shí)現(xiàn)手勢識(shí)別的設(shè)計(jì)方法
2018-11-13 16:04:45

基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性
2021-04-30 06:58:13

基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法解析

本文介紹了基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法,提出了基于FPGA的實(shí)現(xiàn)驗(yàn)證方案,詳細(xì)討論了實(shí)現(xiàn)該壓縮網(wǎng)絡(luò)組成的重要模塊MAC電路的流水線設(shè)計(jì)。
2021-05-06 07:01:59

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)設(shè)計(jì)

FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識(shí)別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對在 FPGA 上實(shí)現(xiàn) CNN 做一個(gè)可行性研究
2019-06-19 07:24:41

如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)

如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)
2021-10-11 08:05:42

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

稱為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢在于:巨量并行性;信息處理和存儲(chǔ)單元結(jié)合在一起;自組織自學(xué)習(xí)功能。與傳統(tǒng)的數(shù)字信號(hào)處理DSP
2019-08-08 06:11:30

怎么設(shè)計(jì)ARM與神經(jīng)網(wǎng)絡(luò)處理的通信方案

FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2019-09-20 06:15:20

求助基于labview的神經(jīng)網(wǎng)絡(luò)pid控制

小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請問這個(gè)控制方法可以嗎?有誰會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16

用FPGA去實(shí)現(xiàn)大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)

1、加速神經(jīng)網(wǎng)絡(luò)的必備開源項(xiàng)目  到底純FPGA適不適合這種大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)?這個(gè)問題其實(shí)我們不適合回答,但是FPGA廠商是的實(shí)際操作是很有權(quán)威性的,現(xiàn)在不論是Intel還是Xilinx都沒有在
2022-10-24 16:10:50

離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡(luò)是什么

2018年全球第三大風(fēng)力發(fā)電機(jī)制造商論文下載地址:https://arxiv.org/pdf/1902.05625v1.pdf論文代碼地址:https://github.com/BinhangYuan/WaveletFCNN需要簡單儲(chǔ)備的知識(shí)離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡(luò)回顧離散小波變
2021-07-12 07:38:36

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐
2020-06-14 22:21:12

超低功耗FPGA解決方案助力機(jī)器學(xué)習(xí)

IoT應(yīng)用。通過提供結(jié)合了靈活、超低功耗FPGA硬件和軟件解決方案、功能全面的機(jī)器學(xué)習(xí)推理技術(shù),Lattice sensAI將加速網(wǎng)絡(luò)邊緣設(shè)備上傳感器數(shù)據(jù)處理和分析的集成。這些新的網(wǎng)絡(luò)邊緣計(jì)算解決方案
2018-05-23 15:31:04

輕量化神經(jīng)網(wǎng)絡(luò)的相關(guān)資料下載

原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類、物體檢測等機(jī)器
2021-12-14 07:35:25

非局部神經(jīng)網(wǎng)絡(luò),打造未來神經(jīng)網(wǎng)絡(luò)基本組件

`將非局部計(jì)算作為獲取長時(shí)記憶的通用模塊,提高神經(jīng)網(wǎng)絡(luò)性能在深度神經(jīng)網(wǎng)絡(luò)中,獲取長時(shí)記憶(long-range dependency)至關(guān)重要。對于序列數(shù)據(jù)(例如語音、語言),遞歸運(yùn)算
2018-11-12 14:52:50

提高傳感器精度的神經(jīng)網(wǎng)絡(luò)方法

為使較低精度傳感器獲得較高精度,以提高傳感器的性能價(jià)格比。本文提出人工神經(jīng)網(wǎng)絡(luò)提高傳感器精度的新方法。該神經(jīng)網(wǎng)絡(luò)可以看成是一個(gè)可以濾去傳感器信號(hào)噪聲的非線性濾
2009-06-16 16:15:0212

基于神經(jīng)網(wǎng)絡(luò)的信息融合故障診斷技術(shù)

利用神經(jīng)網(wǎng)絡(luò)技術(shù)建立信息融合中心, 對多傳感器數(shù)據(jù)進(jìn)行融合處理, 通過多源互補(bǔ)信息減小故障診斷系統(tǒng)的不確定性。文中討論了神經(jīng)網(wǎng)絡(luò)傳感器信息融合方法中數(shù)據(jù)預(yù)處理
2009-06-16 16:33:5711

基于神經(jīng)網(wǎng)絡(luò)傳感器故障監(jiān)測與診斷方法研究

提出了一種基于神經(jīng)網(wǎng)絡(luò)傳感器故障監(jiān)測與診斷的新方法. 該方法先用BP 網(wǎng)絡(luò)的預(yù)測輸出和傳感器實(shí)際輸出之差來判斷傳感器是否發(fā)生了故障,然后用函數(shù)型連接神經(jīng)網(wǎng)絡(luò)模擬傳
2009-06-23 08:57:0327

基于神經(jīng)網(wǎng)絡(luò)的氣體傳感器故障診斷

該文介紹了一種基于人工神經(jīng)網(wǎng)絡(luò)進(jìn)行氣體傳感器故障檢測的新方法,文中利用單個(gè)氣體傳感器的輸出信息為氣體傳感器建立了動(dòng)態(tài)非線性神經(jīng)網(wǎng)絡(luò)氣體傳感器輸出模型,并利用該
2009-06-26 11:37:2613

基于神經(jīng)網(wǎng)絡(luò)的壓力傳感器數(shù)據(jù)融合

針對壓力傳感器在實(shí)際應(yīng)用中受多個(gè)非目標(biāo)參量的影響而導(dǎo)致其輸出數(shù)據(jù)不僅僅與目標(biāo)參量有關(guān),提出了應(yīng)用神經(jīng)網(wǎng)絡(luò)技術(shù)對多傳感器數(shù)據(jù)進(jìn)行融合以消除非目標(biāo)參量對傳感器輸出的
2009-06-27 09:01:2814

基于神經(jīng)網(wǎng)絡(luò)傳感器非線性誤差校正

介紹了用神經(jīng)網(wǎng)絡(luò)校正傳感器系統(tǒng)非線性誤差的原理和方法,提出了基于BP 神經(jīng)網(wǎng)絡(luò)傳感器非線性誤差校正及其模型、算法與實(shí)現(xiàn)技術(shù)。通過計(jì)算機(jī)仿真與應(yīng)用,顯示出這種逆模型不但
2009-06-29 10:22:0612

微氣體傳感器陣列及神經(jīng)網(wǎng)絡(luò)的應(yīng)用

簡要分析由MEMS 工藝制成的新型微氣體傳感器陣列的原理及其優(yōu)點(diǎn),在此基礎(chǔ)上,應(yīng)用人工神經(jīng)網(wǎng)絡(luò)對氣體傳感器陣列的輸出進(jìn)行模式分類、識(shí)別,實(shí)現(xiàn)對單一或混合氣體的有選擇性探測
2009-06-30 10:03:328

神經(jīng)網(wǎng)絡(luò)在多傳感器信息集成與融合中的應(yīng)用

傳感器信息集成與融合在處理信息中呈現(xiàn)出較好的實(shí)用性和優(yōu)越性。介紹了有關(guān)多傳感器信息集成與融合方面的基本知識(shí),分析了傳統(tǒng)的信息融合與運(yùn)用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)多傳感器
2009-06-30 16:59:2721

基于Rough集的多傳感器融合技術(shù)

分析了多傳感器融合的必要性, 提出了基于Rough 集構(gòu)造模糊神經(jīng)網(wǎng)絡(luò)的方法, 并應(yīng)用于多傳感器的智能狀態(tài)監(jiān)測系統(tǒng)。關(guān)鍵詞: Rough 集; 傳感器; 信息融合; 模糊神經(jīng)網(wǎng)絡(luò)Abstract : T
2009-07-02 15:42:255

基于神經(jīng)網(wǎng)絡(luò)傳感器故障監(jiān)測與診斷方法研究

提出了一種基于神經(jīng)網(wǎng)絡(luò)傳感器故障監(jiān)測與診斷的新方法. 該方法先用BP 網(wǎng)絡(luò)的預(yù)測輸出和傳感器實(shí)際輸出之差來判斷傳感器是否發(fā)生了故障,然后用函數(shù)型連接神經(jīng)網(wǎng)絡(luò)模擬傳
2009-07-04 11:14:5318

提高傳感器精度的神經(jīng)網(wǎng)絡(luò)方法

為使較低精度傳感器獲得較高精度,以提高傳感器的性能價(jià)格比。本文提出人工神經(jīng)網(wǎng)絡(luò)提高傳感器精度的新方法。該神經(jīng)網(wǎng)絡(luò)可以看成是一個(gè)可以濾去傳感器信號(hào)噪聲的非線性濾
2009-07-07 09:01:4826

傳感器故障檢測的Powell神經(jīng)網(wǎng)絡(luò)方法

大型熱力控制系統(tǒng)必須能夠檢測傳感器故障,并采取相應(yīng)的措施,保證控制過程的順利進(jìn)行。提出了一種基于Powell 神經(jīng)網(wǎng)絡(luò)的故障檢測新方法,為系統(tǒng)中每一個(gè)傳感器構(gòu)造一個(gè)神經(jīng)網(wǎng)絡(luò)
2009-07-07 09:21:076

隨機(jī)模糊神經(jīng)網(wǎng)絡(luò)在目標(biāo)狀態(tài)信息融合中的應(yīng)用

提出一種新的基于隨機(jī)模糊神經(jīng)網(wǎng)絡(luò)的多傳感器狀態(tài)信息融合方法, 研究和比較了基于單值模糊神經(jīng)網(wǎng)絡(luò)和基于隨機(jī)模糊神經(jīng)網(wǎng)絡(luò)的雷達(dá)與紅外傳感器狀態(tài)信息融合。仿真結(jié)果表明,
2009-07-09 14:42:1610

六維腕力傳感器的補(bǔ)償模糊神經(jīng)網(wǎng)絡(luò)模型

本文基于神經(jīng)網(wǎng)絡(luò)可以對非線性系統(tǒng)的任意逼近能力, 建立了六維腕力傳感器的補(bǔ)償模糊神經(jīng)網(wǎng)絡(luò)模型, 仿真結(jié)果表明, 這種補(bǔ)償模糊神經(jīng)網(wǎng)絡(luò)對六維腕力傳感器非線性系統(tǒng)逼近精度
2009-07-14 09:22:2015

基于神經(jīng)網(wǎng)絡(luò)的信息融合故障診斷技術(shù)

利用神經(jīng)網(wǎng)絡(luò)技術(shù)建立信息融合中心, 對多傳感器數(shù)據(jù)進(jìn)行融合處理, 通過多源互補(bǔ)信息減小故障診斷系統(tǒng)的不確定性。文中討論了神經(jīng)網(wǎng)絡(luò)傳感器信息融合方法中數(shù)據(jù)預(yù)處理與特
2009-07-14 10:22:5713

人工神經(jīng)網(wǎng)絡(luò)傳感器數(shù)據(jù)融合中的應(yīng)用

針對壓力傳感器對溫度的交叉靈敏度,采用BP 人工神經(jīng)網(wǎng)絡(luò)法對其進(jìn)行數(shù)據(jù)融合處理,消除溫度對壓力傳感器的影響,大大提高了傳感器的穩(wěn)定性及其精度,效果良好。關(guān)鍵詞: 人工神
2009-07-16 09:30:2518

基于神經(jīng)網(wǎng)絡(luò)的多維力傳感器靜態(tài)解耦的研究

提出了基于人工神經(jīng)網(wǎng)絡(luò)進(jìn)行多維力傳感器靜態(tài)解耦的方法。
2009-07-18 10:06:0010

基于神經(jīng)網(wǎng)絡(luò)的多傳感器融合技術(shù)研究

研究了基于神經(jīng)網(wǎng)絡(luò)的多傳感器融合技術(shù),并將其應(yīng)用于自主吸塵機(jī)器人中。給出了神經(jīng)網(wǎng)絡(luò)傳感器融合技術(shù)的基本原理,探索了改進(jìn)的BP 信息融合算法,使得改進(jìn)后的算法在收斂
2009-12-31 12:00:1411

基于神經(jīng)網(wǎng)絡(luò)的開關(guān)磁阻電機(jī)無位置傳感器控制-夏長亮

基于神經(jīng)網(wǎng)絡(luò)的開關(guān)磁阻電機(jī)無位置傳感器控制-夏長亮
2017-01-21 11:54:395

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義
2017-07-20 08:58:240

【人工神經(jīng)網(wǎng)絡(luò)基礎(chǔ)】為什么神經(jīng)網(wǎng)絡(luò)選擇了“深度”?

由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會(huì)覺得兩者沒有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01556

神經(jīng)網(wǎng)絡(luò)是什么

神經(jīng)網(wǎng)絡(luò)可以指向兩種,一個(gè)是生物神經(jīng)網(wǎng)絡(luò),一個(gè)是人工神經(jīng)網(wǎng)絡(luò)。生物神經(jīng)網(wǎng)絡(luò):一般指生物的大腦神經(jīng)元,細(xì)胞,觸點(diǎn)等組成網(wǎng)絡(luò),用于產(chǎn)生生物的意識(shí),幫助生物進(jìn)行思考和行動(dòng)。
2018-11-24 09:25:3222031

快速了解神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的教程資料免費(fèi)下載

本文檔的詳細(xì)介紹的是快速了解神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的教程資料免費(fèi)下載主要內(nèi)容包括了:機(jī)器學(xué)習(xí)概述,線性模型,前饋神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò),循環(huán)神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)優(yōu)化與正則化,記憶與注意力機(jī)制,無監(jiān)督學(xué)習(xí),概率圖模型,玻爾茲曼機(jī),深度信念網(wǎng)絡(luò)深度生成模型,深度強(qiáng)化學(xué)習(xí)
2019-02-11 08:00:0025

如何使用神經(jīng)網(wǎng)絡(luò)融合實(shí)現(xiàn)溫度傳感器誤差補(bǔ)償?shù)馁Y料說明

海底油氣輸送管道漏磁檢測裝置工作于高溫高壓環(huán)境下,其中的InSb霍爾傳感器對溫度敏感,需要補(bǔ)償溫度誤差。該文構(gòu)建了多傳感器融合模型,將多個(gè)霍爾傳感器和溫度傳感器的輸出用徑向基函數(shù)(RBF)神經(jīng)網(wǎng)絡(luò)
2020-03-27 17:18:356

什么是神經(jīng)網(wǎng)絡(luò)?什么是卷積神經(jīng)網(wǎng)絡(luò)

在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識(shí)。就目前而言,神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)
2023-02-23 09:14:442251

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來源:青榴實(shí)驗(yàn)室 1、引子 深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。 在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層
2023-05-15 14:20:01549

三個(gè)最流行神經(jīng)網(wǎng)絡(luò)

在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)(MLP),卷積神經(jīng)網(wǎng)絡(luò)(CNN)和遞歸神經(jīng)網(wǎng)絡(luò)(RNN)。
2023-05-15 14:19:181096

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來源:青榴實(shí)驗(yàn)室1、引子深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)
2023-05-17 09:59:19945

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30804

基于傳感器深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的血壓監(jiān)測系統(tǒng)

這項(xiàng)研究開發(fā)了一款基于保形(conformal)柔性應(yīng)變傳感器陣列和深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的智能血壓和心功能監(jiān)測系統(tǒng)。該傳感器具有高靈敏度、高線性度、快速響應(yīng)與恢復(fù)、高各向同性等多種優(yōu)點(diǎn)。
2023-08-20 09:53:20554

卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展 卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)

卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展歷程 卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域
2023-08-21 16:49:391127

卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測和分類。卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361860

淺析深度神經(jīng)網(wǎng)絡(luò)壓縮與加速技術(shù)

深度神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的一種框架,它是一種具備至少一個(gè)隱層的神經(jīng)網(wǎng)絡(luò)。與淺層神經(jīng)網(wǎng)絡(luò)類似
2023-10-11 09:14:33362

已全部加載完成

主站蜘蛛池模板: 五月四房婷婷 | 窝窝午夜视频 | 婷婷五月在线视频 | 1314酒色| 色在线视频播放 | 日本黄色录象 | 爱插综合网 | 日韩一级免费毛片 | www四虎 | 女人张开腿让男人捅爽 | 97人洗澡人人澡人人爽 | 艹逼视频软件 | 亚洲欧美视频二区 | 久久久久久亚洲精品 | 爱我免费视频观看在线www | 成人三级视频 | 国产高清一级视频在线观看 | 欧美乱乱 | jdav视频在线观看 | 亚洲成a人不卡在线观看 | 久久噜国产精品拍拍拍拍 | 欧美高清老少配性啪啪 | 欧美日韩国产网站 | 欧美一卡2卡三卡四卡五卡 欧美一卡二卡3卡4卡无卡六卡七卡科普 | 欧美久久天天综合香蕉伊 | 69天堂| 亚洲偷偷 | 国内自拍网红在综合图区 | 伊人久久大香线蕉综合网站 | 性色视频在线观看 | 午夜国产大片免费观看 | 欧美色视频网站 | 天天夜夜人人 | 午夜在线免费观看视频 | 开心激情五月网 | 伊人9| 自拍偷拍福利视频 | 中文字幕一二三区乱码老 | 色综合久久88色综合天天 | 狠狠色依依成人婷婷九月 | 九九精品久久久久久噜噜 |