在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示
電子發燒友網>電子資料下載>電子資料>PyTorch教程16.7之自然語言推理:微調BERT

PyTorch教程16.7之自然語言推理:微調BERT

2023-06-05 | pdf | 0.22 MB | 次下載 | 免費

資料介紹

在本章前面的部分中,我們為 SNLI 數據集上的自然語言推理任務(如第 16.4 節所述)設計了一個基于注意力的架構(第16.5節)。現在我們通過微調 BERT 重新審視這個任務。正如16.6 節所討論的 ,自然語言推理是一個序列級文本對分類問題,微調 BERT 只需要一個額外的基于 MLP 的架構,如圖 16.7.1所示。

https://file.elecfans.com/web2/M00/A9/CD/poYBAGR9POGANyPIAAKGzmOF458734.svg

圖 16.7.1本節將預訓練的 BERT 提供給基于 MLP 的自然語言推理架構。

在本節中,我們將下載預訓練的小型 BERT 版本,然后對其進行微調以在 SNLI 數據集上進行自然語言推理。

import json
import multiprocessing
import os
import torch
from torch import nn
from d2l import torch as d2l
import json
import multiprocessing
import os
from mxnet import gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

16.7.1。加載預訓練的 BERT

我們已經在第 15.9 節第 15.10 節中解釋了如何在 WikiText-2 數據集上預訓練 BERT (請注意,原始 BERT 模型是在更大的語料庫上預訓練的)。如15.10 節所述,原始 BERT 模型有數億個參數。在下文中,我們提供了兩個版本的預訓練 BERT:“bert.base”與需要大量計算資源進行微調的原始 BERT 基礎模型差不多大,而“bert.small”是一個小版本方便演示。

d2l.DATA_HUB['bert.base'] = (d2l.DATA_URL + 'bert.base.torch.zip',
               '225d66f04cae318b841a13d32af3acc165f253ac')
d2l.DATA_HUB['bert.small'] = (d2l.DATA_URL + 'bert.small.torch.zip',
               'c72329e68a732bef0452e4b96a1c341c8910f81f')
d2l.DATA_HUB['bert.base'] = (d2l.DATA_URL + 'bert.base.zip',
               '7b3820b35da691042e5d34c0971ac3edbd80d3f4')
d2l.DATA_HUB['bert.small'] = (d2l.DATA_URL + 'bert.small.zip',
               'a4e718a47137ccd1809c9107ab4f5edd317bae2c')

預訓練的 BERT 模型都包含一個定義詞匯集的“vocab.json”文件和一個預訓練參數的“pretrained.params”文件。我們實現以下load_pretrained_model 函數來加載預訓練的 BERT 參數。

def load_pretrained_model(pretrained_model, num_hiddens, ffn_num_hiddens,
             num_heads, num_blks, dropout, max_len, devices):
  data_dir = d2l.download_extract(pretrained_model)
  # Define an empty vocabulary to load the predefined vocabulary
  vocab = d2l.Vocab()
  vocab.idx_to_token = json.load(open(os.path.join(data_dir, 'vocab.json')))
  vocab.token_to_idx = {token: idx for idx, token in enumerate(
    vocab.idx_to_token)}
  bert = d2l.BERTModel(
    len(vocab), num_hiddens, ffn_num_hiddens=ffn_num_hiddens, num_heads=4,
    num_blks=2, dropout=0.2, max_len=max_len)
  # Load pretrained BERT parameters
  bert.load_state_dict(torch.load(os.path.join(data_dir,
                         'pretrained.params')))
  return bert, vocab
def load_pretrained_model(pretrained_model, num_hiddens, ffn_num_hiddens,
             num_heads, num_blks, dropout, max_len, devices):
  data_dir = d2l.download_extract(pretrained_model)
  # Define an empty vocabulary to load the predefined vocabulary
  vocab = d2l.Vocab()
  vocab.idx_to_token = json.load(open(os.path.join(data_dir, 'vocab.json')))
  vocab.token_to_idx = {token: idx for idx, token in enumerate(
    vocab.idx_to_token)}
  bert = d2l.BERTModel(len(vocab), num_hiddens, ffn_num_hiddens, num_heads,
             num_blks, dropout, max_len)
  # Load pretrained BERT parameters
  bert.load_parameters(os.path.join(data_dir, 'pretrained.params'),
             ctx=devices)
  return bert, vocab

為了便于在大多數機器上進行演示,我們將在本節中加載和微調預訓練 BERT 的小型版本(“bert.small”)。在練習中,我們將展示如何微調更大的“bert.base”以顯著提高測試準確性。

devices = d2l.try_all_gpus()
bert, vocab = load_pretrained_model(
  'bert.small', num_hiddens=256, ffn_num_hiddens=512, num_heads=4,
  num_blks=2, dropout=0.1, max_len=512, devices=devices)
Downloading ../data/bert.small.torch.zip from http://d2l-data.s3-accelerate.amazonaws.com/bert.small.torch.zip...
devices = d2l.try_all_gpus()
bert, vocab = load_pretrained_model(
  'bert.small', num_hiddens=256, ffn_num_hiddens=512, num_heads=4,
  num_blks=2, dropout=0.1, max_len=512, devices=devices)
Downloading ../data/bert.small.zip from http://d2l-data.s3-accelerate.amazonaws.com/bert.small.zip...

16.7.2。微調 BERT 的數據集

對于 SNLI 數據集上的下游任務自然語言推理,我們定義了一個自定義的數據集類SNLIBERTDataset在每個示例中,前提和假設形成一對文本序列,并被打包到一個 BERT 輸入序列中,如圖 16.6.2所示。回想第 15.8.4 節 ,段 ID 用于區分 BERT 輸入序列中的前提和假設。對于 BERT 輸入序列 ( max_len) 的預定義最大長度,輸入文本對中較長者的最后一個標記會不斷被刪除,直到max_len滿足為止。為了加速生成用于微調 BERT 的 SNLI 數據集,我們使用 4 個工作進程并行生成訓練或測試示例。

class SNLIBERTDataset(torch.utils.data.Dataset):
  def __init__(self, dataset, max_len, vocab=None):
    all_premise_hypothesis_tokens = [[
      p_tokens, h_tokens] for p_tokens, h_tokens in zip(
      *[d2l.tokenize([s.lower() for s in sentences])
       for sentences in dataset[:2]])]

    self.labels = torch.tensor(dataset[2])
    self.vocab = vocab
    self.max_len = max_len
    (self.all_token_ids, self.all_segments,
     self.valid_lens) = self._preprocess(all_premise_hypothesis_tokens)
    print('read ' + str(len(self.all_token_ids)) + ' examples')

  def _preprocess(self, all_premise_hypothesis_tokens):
    pool = multiprocessing.Pool(4) # Use 4 worker processes
    out = pool.map(self._mp_worker, all_premise_hypothesis_tokens)
    all_token_ids = [
      token_ids for token_ids, segments, valid_len in out]
    all_segments = [segments for token_ids, segments, valid_len in out]
    valid_lens = [valid_len for token_ids, segments, valid_len in out]
    return (torch.tensor(all_token_ids, dtype=torch.long),
        torch.tensor(all_segments, dtype=torch.long),
        torch.tensor(valid_lens))

  def _mp_worker(self, premise_hypothesis_tokens):
    p_tokens, h_tokens = premise_hypothesis_tokens
    self._truncate_pair_of_tokens(p_tokens, h_tokens)
    tokens, segments = d2l.get_tokens_and_segments(p_tokens, h_tokens)
    token_ids = self.vocab[tokens] + [self.vocab['']] \
               * (self.max_len - len(tokens))
    segments = segments + [0] * (self.max_len - len(segments))
    valid_len = len(tokens)
    return token_ids, segments, valid_len

  def _truncate_pair_of_tokens(self, p_tokens, h_tokens):
    # Reserve slots for '', '', and '' tokens for the BERT
    # input
    while len(p_tokens) + len(h_tokens) > self.max_len - 3:
      if len(p_tokens) > len(h_tokens):
        p_tokens.pop()
      else:
        h_tokens.pop()

  def __getitem__(self, idx):
    return (self.all_token_ids[idx], self.all_segments[idx],
        self.valid_lens[idx]), self.labels[idx]

  def __len__(self):
    return len(self.all_token_ids)
class SNLIBERTDataset(gluon.data.Dataset):
  def __init__(self, dataset, max_len, vocab=None):
    all_premise_hypothesis_tokens = [[
      p_tokens, h_tokens
下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1A7159和A7139射頻芯片的資料免費下載
  2. 0.20 MB   |  55次下載  |  5 積分
  3. 2PIC12F629/675 數據手冊免費下載
  4. 2.38 MB   |  36次下載  |  5 積分
  5. 3PIC16F716 數據手冊免費下載
  6. 2.35 MB   |  18次下載  |  5 積分
  7. 4dsPIC33EDV64MC205電機控制開發板用戶指南
  8. 5.78MB   |  8次下載  |  免費
  9. 5STC15系列常用寄存器匯總免費下載
  10. 1.60 MB   |  7次下載  |  5 積分
  11. 6模擬電路仿真實現
  12. 2.94MB   |  4次下載  |  免費
  13. 7PCB圖繪制實例操作
  14. 2.92MB   |  2次下載  |  免費
  15. 8零死角玩轉STM32F103—指南者
  16. 26.78 MB   |  1次下載  |  1 積分

本月

  1. 1ADI高性能電源管理解決方案
  2. 2.43 MB   |  452次下載  |  免費
  3. 2免費開源CC3D飛控資料(電路圖&PCB源文件、BOM、
  4. 5.67 MB   |  141次下載  |  1 積分
  5. 3基于STM32單片機智能手環心率計步器體溫顯示設計
  6. 0.10 MB   |  137次下載  |  免費
  7. 4A7159和A7139射頻芯片的資料免費下載
  8. 0.20 MB   |  55次下載  |  5 積分
  9. 5PIC12F629/675 數據手冊免費下載
  10. 2.38 MB   |  36次下載  |  5 積分
  11. 6如何正確測試電源的紋波
  12. 0.36 MB   |  19次下載  |  免費
  13. 7PIC16F716 數據手冊免費下載
  14. 2.35 MB   |  18次下載  |  5 積分
  15. 8Q/SQR E8-4-2024乘用車電子電器零部件及子系統EMC試驗方法及要求
  16. 1.97 MB   |  8次下載  |  10 積分

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935121次下載  |  10 積分
  3. 2開源硬件-PMP21529.1-4 開關降壓/升壓雙向直流/直流轉換器 PCB layout 設計
  4. 1.48MB  |  420062次下載  |  10 積分
  5. 3Altium DXP2002下載入口
  6. 未知  |  233088次下載  |  10 積分
  7. 4電路仿真軟件multisim 10.0免費下載
  8. 340992  |  191367次下載  |  10 積分
  9. 5十天學會AVR單片機與C語言視頻教程 下載
  10. 158M  |  183335次下載  |  10 積分
  11. 6labview8.5下載
  12. 未知  |  81581次下載  |  10 積分
  13. 7Keil工具MDK-Arm免費下載
  14. 0.02 MB  |  73810次下載  |  10 積分
  15. 8LabVIEW 8.6下載
  16. 未知  |  65988次下載  |  10 積分
主站蜘蛛池模板: 亚洲一级色| 69女poren18女| 四虎欧美在线观看免费 | 一级片免费观看视频 | 狠狠色丁香婷婷久久 | 高清午夜毛片 | 可以直接看的黄色网址 | 俄罗斯欧美色黄激情 | 免费看黄色小视频 | 久久香蕉国产视频 | 第四色播日韩第一页 | 磁力bt种子搜索在线 | 网站在线观看视频 | 色婷婷激情 | 久青草国产手机在线视频 | 好爽毛片一区二区三区四区 | 欧美成人精品一区二三区在线观看 | videsgratis欧美另类 | 天天干夜夜草 | 欧美色图亚洲激情 | 天天噜天天干 | xxxx免费大片 | 国产综合13p | 一级毛片免费毛片一级毛片免费 | 大色视频| ccav在线永久免费看 | 国产裸体美女视频全黄 | 天天综合网久久 | 77米奇影院 | 欧美精品国产第一区二区 | 日本欧洲亚洲一区在线观看 | 边摸边吃奶边做视频叫床韩剧 | 亚洲精品国产自在久久出水 | 天天爽夜夜爽精品免费 | 日本成人视屏 | 日本www色 | 色吧在线视频 | 五月婷婷丁香 | 毛片2016免费视频 | 国产精品欧美一区二区 | 97人人模人人揉人人捏 |