完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>
標簽 > BLE
藍牙低能耗技術簡介藍牙低能耗(BLE)技術是低成本、短距離、可互操作的魯棒性無線技術,工作在免許可的2.4GHz ISM射頻頻段。
藍牙低能耗技術簡介藍牙低能耗(BLE)技術是低成本、短距離、可互操作的魯棒性無線技術,工作在免許可的2.4GHz ISM射頻頻段。它從一開始就設計為超低功耗(ULP)無線技術。它利用許多智能手段最大限度地降低功耗。藍牙低能耗技術采用可變連接時間間隔,這個間隔根據具體應用可以設置為幾毫秒到幾秒不等。另外,因為BLE技術采用非常快速的連接方式,因此平時可以處于“非連接”狀態(節省能源),此時鏈路兩端相互間只是知曉對方,只有在必要時才開啟鏈路,然后在盡可能短的時間內關閉鏈路。BLE技術的工作模式非常適合用于從微型無線傳感器(每半秒交換一次數據)或使用完全異步通信的遙控器等其它外設傳送數據。這些設備發送的數據量非常少(通常幾個字節),而且發送次數也很少(例如每秒幾次到每分鐘一次,甚至更少)。
藍牙低能耗技術簡介藍牙低能耗(BLE)技術是低成本、短距離、可互操作的魯棒性無線技術,工作在免許可的2.4GHz ISM射頻頻段。它從一開始就設計為超低功耗(ULP)無線技術。它利用許多智能手段最大限度地降低功耗。藍牙低能耗技術采用可變連接時間間隔,這個間隔根據具體應用可以設置為幾毫秒到幾秒不等。另外,因為BLE技術采用非常快速的連接方式,因此平時可以處于“非連接”狀態(節省能源),此時鏈路兩端相互間只是知曉對方,只有在必要時才開啟鏈路,然后在盡可能短的時間內關閉鏈路。BLE技術的工作模式非常適合用于從微型無線傳感器(每半秒交換一次數據)或使用完全異步通信的遙控器等其它外設傳送數據。這些設備發送的數據量非常少(通常幾個字節),而且發送次數也很少(例如每秒幾次到每分鐘一次,甚至更少)。
超低功耗無線技術
藍牙低能耗技術的三大特性成就了ULP性能,這三大特性分別是最大化的待機時間、快速連接和低峰值的發送/接收功耗。
無線“開啟”的時間只要不是很短就會令電池壽命急劇降低,因此任何必需的發送或接收任務需要很快完成。被藍牙低能耗技術用來最小化無線開啟時間的第一個技巧是僅用3個“廣播”信道搜索其它設備,或向尋求建立連接的設備宣告自身存在。相比之下,標準藍牙技術使用了32個信道。
這意味著藍牙低能耗技術掃描其它設備只需“開啟”0.6至1.2ms時間,而標準藍牙技術需要22.5ms時間來掃描它的32個信道。結果藍牙低能耗技術定位其它無線設備所需的功耗要比標準藍牙技術低10至20倍。
值得注意的是,使用3個廣告信道是某種程度上的妥協:這是在頻譜非常擁擠的部分對“開啟”時間(對應于功耗)和魯棒性的一種折衷(廣告信道越少,另外一個無線設備在選用頻率上廣播的機會就越多,就越容易造成信號沖突)。不過該規范的設計師對于平衡這種妥協相當有信心——比如,他們選擇的廣告信道不會與Wi-Fi默認信道發生沖突。
一旦連接成功后,藍牙低能耗技術就會切換到37個數據信道之一。在短暫的數據傳送期間,無線信號將使用標準藍牙技術倡導的自適應跳頻(AFH)技術以偽隨機的方式在信道間切換(雖然標準藍牙技術使用79個數據信道)。
要求藍牙低能耗技術無線開啟時間最短的另一個原因是它具有1Mbps的原始數據帶寬——更大的帶寬允許在更短的時間內發送更多的信息。舉例來說,具有250kbps帶寬的另一種無線技術發送相同信息需要開啟的時間要長8倍(消耗更多電池能量)。
藍牙低能耗技術“完成”一次連接(即掃描其它設備、建立鏈路、發送數據、認證和適當地結束)只需3ms。而標準藍牙技術完成相同的連接周期需要數百毫秒。再次提醒,無線開啟時間越長,消耗的電池能量就越多。
藍牙低能耗技術還能通過兩種其它方式限制峰值功耗:采用更加“寬松的”射頻參數以及發送很短的數據包。兩種技術都使用高斯頻移鍵控(GFSK)調制,但藍牙低能耗技術使用的調制指數是0.5,而標準藍牙技術是0.35。0.5的指數接近高斯最小頻移鍵控(GMSK)方案,可以降低無線設備的功耗要求(這方面的原因比較復雜,本文暫不贅述)。更低調制指數還有兩個好處,即提高覆蓋范圍和增強魯棒性。
標準藍牙技術使用的數據包長度較長。在發送這些較長的數據包時,無線設備必須在相對較高的功耗狀態保持更長的時間,從而容易使硅片發熱。這種發熱將改變材料的物理特性,進而改變傳送頻率(中斷鏈路),除非頻繁地對無線設備進行再次校準。再次校準將消耗更多的功率(并且要求閉環架構,使得無線設備更加復雜,從而推高設備價格)。
相反,藍牙低能耗技術使用非常短的數據包——這能使硅片保持在低溫狀態。因此,藍牙低能耗收發器不需要較耗能的再次校準和閉環架構。
物聯網浪潮下,到底選用哪種通信方式將硬件與云連接起來?這是所有智能硬件創業者乃至消費者都感到頭痛的問題。##通信方式是LED智能控制系統中的重要組成部分...
科技在不斷進步,越來越多的智能家居產品和服務進入到人們的日常生活中。智能燈是一款常見的智能設備,安裝智能燈后,用戶可以使用手機 App 輕松調整室內顏色...
物聯網應用中,成功連接設備的過程,連接性的角色至關重要,選擇范圍也很廣:如Wi-Fi、低功耗藍牙(BLE)、RFID、NFC等等。根據市占率估計,在20...
在開發BLE的時候,市面上有多種抓包工具,對于多通道/多連接/藍牙Mesh 的開發,往往需要一些更強大的工具,這里推薦使用Ellisys的藍牙抓包器。
智慧可穿戴方案是對日常穿戴進行智慧化設計、開發,Bluetooth 4.0 BLE 技術很快會成為可穿戴技術約定俗成的連接解決方案。##基于 ST ST...
2020年藍牙市場發展減緩,在汽車以及智能手機等特定市場的出貨量有所下降,但在無線鼠標、鍵盤等居家辦公用品,以及穿戴式健康監測裝置領域,藍牙產品的出貨量...
我們需要明白藍牙技術的最新進展,目前日常生活中接觸到的藍牙共有兩種:傳統藍牙與 BLE(Bluetooth Low Energy)。傳統藍牙使用點對點的...
2023年全球藍牙設備出貨量將為54億,其中,將有90%以上的藍牙設備會使用低功耗藍牙芯片,并且將有約30%的設備使用單模低功耗藍牙。而擁有全球最大的需...
藍牙(Bluetooth)這個詞,我們可都太熟悉了。不過你整天說藍牙、用藍牙,那藍牙究竟是個啥呢? 這事得從一位丹麥國王說起 藍牙,實際上是一種短距離無...
編輯推薦廠商產品技術軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯網 | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發電 | UPS | AR | 智能電網 | 國民技術 | Microchip |
開關電源 | 步進電機 | 無線充電 | LabVIEW | EMC | PLC | OLED | 單片機 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 藍牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太網 | 仿真器 | RISC | RAM | 寄存器 | GPU |
語音識別 | 萬用表 | CPLD | 耦合 | 電路仿真 | 電容濾波 | 保護電路 | 看門狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 閾值電壓 | UART | 機器學習 | TensorFlow |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |