在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發燒友網>新科技>新材料> > 正文

深度:石墨烯的儲能特性及其前景展望

Michaeltuo?來源:電源技術? 2017年02月16日 08:39 ? 次閱讀

  能源和環境問題是目前人類亟需解決的兩大問題。在化石能源日漸枯竭、環境污染日益嚴重、全球氣候變暖的今天,尋求替代傳統化石能源的可再生綠色能 源、謀求人與環境的和諧顯得尤為迫切。新型的可再生能源,譬如風能和太陽能 等的利用,電動汽車、混合動力電動車的逐步市場化,各種便攜式用電裝置的快速發展,均需要高效、實用、“綠色”(零污染、低污染)的能量儲運體系。對于新型的“綠色”儲能器件,在關切其“綠色”的同時,高功率密度、高能量密度則是其是否可以真正替代傳統能量儲運體系的重要指標。新型的電源體系,特別是二次電池或者超級電容器是目前重要的“綠色”儲能裝置。而其中核心部分是性能優異的儲能材料。各種碳質材料,特別是 sp2 雜化的碳質材料,由于其特殊的層狀結構或者超大的比表面積,成為重要的儲能材料或者儲能體系的電極材料。作為sp2雜化碳質材料的基元結構的單層石墨——石墨烯(graphene),2004年被成功制備;獨特的結構——真正的表面性固體(無孔、表面碳原子比例為 100% 的超大表面材料),使其成為下一代碳質電極材料的重要選擇。

  1 sp2 雜化碳質材料:重要的儲能材料

  碳是自然界廣泛存在的一種元素, 具有多樣性、特異性和廣泛性的特點。碳元素可以 sp、sp2 、sp3 三種雜化方式形成固體單質。而 sp2 雜化形成的碳質材料的基元結構是二維石墨烯片層。如圖1所示,如果在六元環形成的石墨烯晶格結構中存在五元環的晶格, 就會使石墨烯片層翹曲, 當有12個以上五元環晶格存在時就會形成零維的富勒烯;碳納米管可以看作是石墨烯沿一定角度卷曲形成的圓筒狀一維材料;石墨烯片層相互作用、疊加,便形成了三維的體相石墨。而作為無定形的多孔碳質材料(活性炭、活性炭纖維及炭氣 凝膠等) 則是由富含缺陷的微晶石墨炭(厚度和尺度很小的三維石墨片層結構)相互作用形成。

  

  碳質材料是目前在綠色電源體系中應用最廣泛的電極材料之一。鋰離子二次電池、超級電容器、太陽電池、燃料電 池、儲氫 / 甲烷等新能源領域,無處不有 碳質材料的身影。sp2 雜化的碳質材料具有石墨(或者尺度較小的微晶石墨)層狀結構或者由大量缺陷而形成的織構特征 (豐富孔隙)和大的比表面積,而成為重要的電極材料,這些材料主要包括:石墨材料、多孔炭材料以及碳納米管等。結構少缺陷的層狀 sp2 碳石墨材料是目前應用最為廣泛的商用鋰離子電池負極材料;富含缺陷的多孔碳質材料是目前超級電容器的主要電極材料;而碳納米管作為一種新穎的sp2雜化碳質材料,又被預測將可能廣泛應用于染料敏化太陽電池中。

  不論商品化或者尚處于研發階段的“綠色”儲能器件,其性能和性價比還有 待提高,對sp2雜化的碳質材料進行結構優化、改性,開發更高性能或者更高性價比的電極材料是材料科學家的使命。以超級電容器為例,在其真正走向大規模應用之前,更高功率密度、更高能量密度、性價比高的碳質電極材料的開發是材料科學家必須完成的任務。筆者認為,在碳基超級電容器材料的研發方面,材料科學家可以從如下幾個方面進行工作:

  (1) 擴充儲電空間——高的能量密度

  碳基電雙層電容器的儲電機理是電荷在電極表面的有序富集。對于超級電容器,適合電荷聚集的有效“表面積”越大(電解質溶液可以接觸的表面),其儲電容量越大。不含缺陷的sp2碳質材料的極限比表面積 (單層石墨烯片層) 是2 630 m2/g;而富含缺陷的sp2碳質材料的極限比表面積還要大于這個數值。由于一般方法很難獲得單層石墨烯片層,提高碳質材料比表面積的主要方法是在碳質材料中營造孔隙,提高表面碳原子的比例,從而增加其比表面積;而孔隙率的增加制約了其功率特性的進一步提高。如何在提高比表面積,獲得高能量密度的同時,保持高的功率特性是獲得高性能超 級電容器的重要課題。

  (2) 控制微觀結構和宏觀織構——高的功率特性

  一般來說,主要通過提高孔隙率來獲得高比表面積碳質電極材料。但孔隙的存在帶來另一個問題,即電解質溶液的擴散問題等。如何在提高比表面積的同時,保持其電解質溶液對靜電荷儲存表面的浸潤,保證電解質離子以較高速率從溶液體相向碳質材料表面擴散,是碳質電極材料方面需要解決的重要問題之一。

 ?。?) 提高石墨烯片層結構完整性——低內阻和高導電特性

  電極材料需要良好的導電特性,完整的石墨烯片層具有良好的導電特性。作為電極材料的sp2碳質材料應該具有良好的結構完整性。通過活化等方法營造孔 隙——缺陷,在提高碳質材料比表面的同時,導電特性變差。如何在提高比表面積的同時,不降低sp2碳的導電特性也是提高碳質電極材料性能需要克服的瓶頸。 作為sp2雜化碳質材料基元結構的單層或者薄層石墨烯,是可以解決以上瓶頸的理想材料。主要原因如下:單層或者數層石墨烯片層,具有無孔隙的二維平面結構。儲電空間位于石墨烯片層表面,其儲能特性完全依賴于石墨烯的比表面積和表面化學。微米級的石墨烯片層搭接形成石墨烯宏觀體,具有簡單的織構特性,不含孔隙,與電解質溶液有良好的接觸。經過與其它材料的復合,可以調控其織 構,保證材料良好的功率特性。如果作為鋰離子電池負極材料,鋰離子在薄層石墨烯片層(片層尺度在微米級,遠小于體相石墨)之間的擴散路徑比較短,可以大大提高其功率特性。石墨烯片層零缺陷或者少缺陷,保證其具有良好的導電和導熱特性,是電極材料,特別是微型的電源器件所用電極材料的理想候選。

  基于以上幾點,作為sp2雜化材料的單層或者薄層(2~10 層)石墨烯是理想的超級電容器電極材料,可望提高超級電容器的功率和能量密度。同時由于其獨 特的薄層、縱向和橫向尺度的可切割性、良好的導熱和導電特性,石墨烯也是其他儲能體系的理想候選材料。

  2 sp2碳質材料的基元材料 ——石墨烯 :誕生和奇特性質

  2004 年,曼徹斯特大學的Geim小組首次用機械劈裂法(mechanical cleavage)獲得單層和薄層石墨烯。在此之前,科學家們一直認為嚴格的二維晶體熱力學不穩定,不可能獨立存在。

  石墨烯是目前已知最薄的二維材料,完美的石墨烯具有理想二維晶體結構,由六邊形晶格組成。自從被成功制備出來,石墨烯在全世界范圍內引起了一股新的研究熱潮——物理、化學、材料科學家開始對石墨烯進行系統研究,各種極具魅力的奇特性質相繼被發現,被預測很有可能會在很多領域引起革命性的變化。目前,主要的石墨烯制備方法有機械劈裂法、外延晶體生長法、化學氣相沉積法、氧化石墨的熱膨脹和還原方法。還有其他一些制備方法也陸續被開發出來,如氣相等離子體生長技術,靜電沉積法和高溫高壓合成法等。

  筆者認為,在這些方法中,最有可能實現石墨烯規?;苽洌瑢崿F大規模應用的是氧化石墨的熱膨脹法和還原法。這種方法的主要過程是:將氧化石墨在短時間內快速升溫到一定溫度以上 (一 般的方法是1 000 ℃以上),使氧化石墨 片層通過片層間官能團的分解作用而互相剝離。氧化石墨烯還原法,是以氧化石墨為原料,在溶劑中超聲,得到氧化石墨烯溶液,然后用化學還原劑還原,得到石墨烯。現有的很多研究工作也是基于這兩種方法進行的。我們小組發明了低溫 熱膨脹技術,可以低成本獲得宏量石墨烯材料。

  石墨烯是真正的表面性固體,理想的單層石墨烯具有超大的比表面積(2 630 m2 /g),是很有潛力的儲能材料。石墨烯也具有良好的電學、力學、光學和 熱學性質。石墨烯是一種沒有能隙的半導體,它具有比硅高很多的載流子遷移率(2×105 cm2 /V),在室溫下有微米級的平均自由程和大的相干長度,因此石墨烯是納米電路的理想材料,也是驗證量子效應的理想材料;石墨烯具有良好的導電性,其電子的運動速度達到了光速的 1/300,遠遠超過了電子在一般導體中的運動速度。石墨烯具有良好的透光性,是傳統ITO膜潛在替代產品。石墨烯具有良好的熱學性質,Ghosh等利用基于微拉曼光譜的無觸點技術測量得到石墨烯的熱導率為3080~5150 W/mK。 石墨烯也具有非常高的力學強度,Liu和Lee等分別利用第一原理計算和實驗證明石墨烯片層是目前已知強度最高的材料,其理想強度為110~130GPa。

  良好的導電性是其他大比表面積碳質材料很難具有的獨特性質,預示著石墨烯很可能是性能極佳的電極材料;而良好的熱導性質、光學性質和力學強度, 也預示著石墨烯材料可用于超薄型、超微型的電極材料和儲能器件,而這樣的儲能元件可用于高密度的納電子器件和高功率電池組中。

  3 具有理想二維結構的石墨烯:新型儲能材料

  3.1 石墨烯在超級電容器中的應用

  碳質材料是最早也是目前研究和應用得很廣泛的超級電容器電極材料。用于超級電容器的碳質材料目前主要集中于活性炭(AC)、活性炭纖維(ACF)、炭氣凝膠、碳納米管(CNTs)和模板炭等。這些sp2碳質材料的基元材料是石墨烯。自石墨烯被成功制備出來后,人們開始探究其這種極限結構的 sp2 碳質材料在超級電容器里應用的可能性。

  Ruoff小組利用化學改性的石墨烯作為電極材料,測試了基于石墨烯的超級電容器的性能。這種石墨烯材料的電容性能在水系和有機電解液中的比電容 分別可以達到135 F/g和99 F/g(圖 2)。Rao等人比較了通過三種方法制備的石墨烯的電容性能。在硫酸電解液中,通過氧化石墨熱膨脹法和納米金剛石轉化法得到的石墨烯具有較高的比電容,可以達到117 F/g;在有機電解液中,電壓為3.5 V的時候,其比電容和比能量可以達到 71F/g 和31.9 Wh/kg。

  

  我們小組通過低溫熱膨脹法制備的石墨烯材料,未經任何后處理,在 30%(質 量分數) KOH 電解液中,其比電容可以達到180~230 F/g;與氧化物復合后,比電容得到大幅提高,同時具有良好的功率特性。中科院金屬所和南開大學相關小組也已經取得很好的研究進展。

  石墨烯材料應用于超級電容器有其獨特的優勢。石墨烯是完全離散的單層石墨材料,其整個表面可以形成雙電層;但是在形成宏觀聚集體過程中,石墨烯片層之間互相雜亂疊加,會使得形成有效雙電層的面積減少(一般化學法制備 獲得的石墨烯具有200~1 200 m2/g)。即使如此,石墨烯仍然可以獲得100~230 F/g 的比電容。如果其表面可以完全釋放,將獲得遠高于多孔炭的比電容。在石墨烯片層疊加,形成宏觀體的過程中,形成的孔隙集中在 100 nm 以上,有利于電解液的擴散,因此基于石墨烯的超級電容器具有良好的功率特性。

  3.2 石墨烯在鋰離子電池中的應用

  對鋰離子電池負極材料的研究,主要集中在碳質材料、合金材料和復合材料等方面。碳質材料是最早為人們所研究并應用于鋰離子電池商品化的材料,至今仍是大家關注和研究的重點之一。碳質材料根據其結構特點可分成可石墨化炭(軟炭)、 無定形炭(硬炭)和石墨類。目前對碳負極的研究主要是采用各種手段對其表面進行改性,但是對人造石墨再進行表面處理將進一步增加制造成本,因此今后研究的重點仍將是怎樣更好地利用廉價的天然石墨和開發有價值的無定形碳材料。因此,從石墨出發制造低成本高性能的鋰離子電池負極材料是現在的主要研究方向。石墨烯作為一種由石墨出發制備的新型碳質材料,單層或者薄層石墨(2~10 層的多層石墨烯)在鋰離子電池里的應用潛力也落入研究者的視野之中。

  Yoo等人研究了石墨烯應用于鋰離子二次電池負極材料中的性能,其比容量可以達到540 mAh/g。如果在其中摻入C60和碳納米管后,負極的比容量可以達到784 mAh/g 和730 mAh/g。Khantha 等人通過理論計算討論了石墨烯的儲鋰機理。

  我們運用低溫法制備的石墨烯材料直接用于鋰離子二次電池的負極材料,其首次放電比容量可以達到 650 mAh/g。經過改性,此結果還可以提高。但其首次充放電效率和循環效率較低,需要對石墨烯結構進行改性。多層石墨烯由于具有一定的儲鋰空間,同時鋰離子的擴散路徑比較短,因此應該具有較好的功率特性。相關小組目前正在開展石墨烯的結構改性和復合,進行相關的研究工作。

  3.3 石墨烯在太陽電池中的應用

  除了顯示出作為超級電容器和鋰離子電池的巨大潛力外,石墨烯也在太陽電池、儲氣方面展現出獨特的優勢。二維的石墨烯具有良好的透光性和導電性, 是很有潛力替代ITO的材料。利用石墨烯制作透明導電膜并將其應用于太陽電池中也成為人們所研究的熱點。

  Wang 等人利用氧化石墨熱膨脹后熱處理還原得到的石墨烯制作為透明導 電膜應用于染料敏化太陽電池中,取得了較好的結果。制備的石墨烯透明導電膜的電導率可以達到 550 S/cm,在 1000~3000nm 的光波長范圍內,透光率可以達到 70%以上(圖3)。Wu等人用溶液法制備的石墨烯透明導電膜應用于有機太陽電池中作為陽極,但是由于應用的石墨烯未經過有效的還原,所以電阻較大,導致得到的太陽電池的短路電流及填充因數不及氧化銦,如果可以降低石墨烯膜的電阻,得到的結果可能要更好。Liu等人用溶液法制備的石墨烯與其它貴金屬材料復合的電極組裝的有機太陽電池的短路電流可以到4.0 mA/cm2 ,開路電壓為 0.72 V,光轉化率可以達到1.1%。Li等人對石墨采用剝離- 再嵌入 - 擴張的方法,成功制備了高質量石墨烯,其電阻比通過以氧化石墨為原料制備的石墨烯低100倍,并以DMF為溶劑,成功制備了LB膜,這種透明導電膜也成為應用于太陽電池的潛在材料。

  

  我們和合作小組率先報道了運用氣液界面自組裝方法制備大表面積、無支撐超薄石墨烯膜;經過選擇性摻雜、改性,可以獲得不同電性質和透光率的石墨烯柔性膜,是一種潛在的太陽電池電極材料。

  3.4 石墨烯在儲氫/甲烷中的應用

  Dimitrakakis利用石墨烯和碳納米管設計了一個三維儲氫模型,如果這種材料摻入鋰離子,其在常壓下儲氫能力可以達到41g/L(圖 4)。因此,石墨烯這種新材料的出現,為人們對儲氫/甲烷材料的設計提供了一種新的思路和材料。

  

  4 結語與展望——石墨烯作為新型儲能材料的前景分析

  石墨烯具有較大的比表面積,良好的導電性和導熱特性,是很有潛力的儲能材料。筆者認為,石墨烯作為儲能材料,其優勢有以下幾點:

  石墨原料儲量豐富、便宜,化學法制備的石墨烯成本較低;我們課題組發明的低溫膨化法使其成本有了很大的降低。在對其工藝進行優化、放大之后,化學法制備的功能化石墨烯材料有望成為 很有競爭力的儲能材料。

  石墨烯具有良好的導電性和開放的表面,賦予其很好的儲能功率特性。其宏觀體織構由微米級、導電性好的石墨烯片層搭接而形成,形成開放的大孔徑體系,這樣的結構為電解質離子的進入提供了勢壘極低的通道,保證這種材料良好的功率特性。

  石墨烯具有較大的理論比表面積。大的比表面積決定了其具有較高的能量密度。目前石墨烯材料的比表面積(200~1200 m2 /g) 與理論預測值還有較大的差距,如何調控石墨烯的織構,使石 墨烯表面可以完全被電解質溶液所浸 潤,是目前的重要課題。

  石墨烯性狀特征和活性炭、石墨材料相近,如果作為電極材料,可以與現有的超級電容器和鋰離子電池的工藝路線兼容。 石墨烯材料具有導電和導熱特性, 且可以形成厚度可調控的石墨烯膜,可以構建非常好的薄膜電池和儲能器件。

  石墨烯作為sp2 雜化材料的基元材 料,可以通過表面改性、復合,構筑“納 米建筑”等手段對其進行二次結構的構建,通過優化結構,獲得高儲電容量的材料。我們和日本東北大學京谷隆小組合作研究表明,在分子篩微孔孔隙中可以制備獲得單層石墨烯片層扭曲形成的單壁多孔炭,經過熱處理可以獲得非常好的大功率 特性。

  總之,石墨烯材料具有優異的儲能性質,也表現出良好的應用前景。目前石墨烯的研究尚待深入,經過系統研發,解決其中科學問題和工藝問題后,有望成為市場潛力巨大的電極材料。

下載發燒友APP

打造屬于您的人脈電子圈

關注電子發燒友微信

有趣有料的資訊及技術干貨

關注發燒友課堂

鎖定最新課程活動及技術直播

電子發燒友觀察

一線報道 · 深度觀察 · 最新資訊
收藏 人收藏
分享:

評論

相關推薦

過硫酸銨溶液蝕刻回收銅上石墨烯片的合成

石墨烯是一種原子級薄層2D碳納米材料,具有以六方晶格結構排列的sp2鍵碳原子。石墨烯因其優異的物理和....
發表于 2023-10-24 09:35? 12次閱讀
過硫酸銨溶液蝕刻回收銅上石墨烯片的合成

超聲波項目佑航科技獲數千萬元融資,美科學家發現石...

傳感新品 【湖南大學和南華大學:研究新型超低電位電化學發光適配體傳感器】 近日,湖南大學蔡仁和南華大....
發表于 2023-10-20 08:43? 107次閱讀
超聲波項目佑航科技獲數千萬元融資,美科學家發現石...

AR/VR熱管理方案

VR/AR一體機是將獨立運算系統、光學顯示系統、音頻系統、感知交互系統高度集成在一體空間的頭戴式智能....
發表于 2023-10-17 10:07? 89次閱讀
AR/VR熱管理方案

什么是CNT、SWCNT和MWCNT?CNT技術...

市場研究機構IDTechEx指出,隨著硅基器件尺寸逼近物理極限,硅柔性化處理已日趨接近天花板;碳基材....
發表于 2023-10-15 11:57? 144次閱讀
什么是CNT、SWCNT和MWCNT?CNT技術...

超級蒙烯材料:石墨烯家族的新成員

從堆垛結構上看,石墨烯纖維接近傳統石墨;而從宏觀形態上看,它類似于碳纖維。石墨烯粉體通過與高分子復合....
發表于 2023-10-12 16:19? 77次閱讀
超級蒙烯材料:石墨烯家族的新成員

石墨烯,提高超導體的電流密度

為了解決這些缺陷,由芝浦理工學院超導材料能源與環境實驗室的 Muralidhar Miryala 教....
發表于 2023-10-10 17:44? 138次閱讀
石墨烯,提高超導體的電流密度

石墨烯力學特性在國防領域的應用

石墨烯強度很高,根據原子力顯微鏡基于懸浮石墨烯的壓痕實驗得到的單個石墨烯片的彈性模量 約為1Tpa,....
發表于 2023-10-09 15:32? 23次閱讀
石墨烯力學特性在國防領域的應用

石墨烯遠紅外線對人體有什么作用

這一理論是根據機體的各種生物活性分子(核酸、蛋白質、糖、脂肪)的化學組成空間的構象與分子的功能活性之....
發表于 2023-10-08 16:36? 111次閱讀
石墨烯遠紅外線對人體有什么作用

獲諾貝爾獎的“量子點”有望應用于鈣鈦礦電池,光電...

與染料敏化太陽能電池一樣,鈣鈦材料也覆蓋在電荷傳導空心支架上,作為光吸收劑使用。伊朗研究小組開始用轉....
發表于 2023-10-08 14:33? 436次閱讀
獲諾貝爾獎的“量子點”有望應用于鈣鈦礦電池,光電...

一文了解石墨烯發熱膜

電熱膜就是一種通電后能發熱的薄膜。它是由電絕緣材料與封裝其內的發熱電阻材料組成的平面型發熱元件。因為....
發表于 2023-09-28 10:23? 182次閱讀
一文了解石墨烯發熱膜

研究人員使用石墨烯和量子點設計用于眼動追蹤應用的...

眼動追蹤通常涉及從用戶眼睛反射紅外光,并使用圖像處理算法分析反射信號,以測量眼睛位置、運動和瞳孔擴張....
發表于 2023-09-20 16:45? 269次閱讀
研究人員使用石墨烯和量子點設計用于眼動追蹤應用的...

光學微納3D傳感器企業楚光三維完成近千萬天使輪融...

傳感新品 【巴塞羅那科學技術研究所:研究人員使用石墨烯和量子點設計用于眼動追蹤應用的半透明圖像傳感器....
發表于 2023-09-20 08:46? 502次閱讀
光學微納3D傳感器企業楚光三維完成近千萬天使輪融...

從單層石墨烯中收集拉曼光譜

背景 Ping-Heng Tan教授在北京中國科學院的研究重點是二維層狀材料的光學性質。這還包括相關....
發表于 2023-09-18 14:49? 86次閱讀
從單層石墨烯中收集拉曼光譜

基于鋸齒形石墨烯納米帶及其五元環衍生結構的自旋卡...

為了減小界面處的晶格形變,提高電子透射性能,我們基于STGNR和5-STGNR納米帶,設計了全新的自....
發表于 2023-09-12 17:59? 190次閱讀
基于鋸齒形石墨烯納米帶及其五元環衍生結構的自旋卡...

什么是LTDF石墨烯?為什么它是復合材料的最佳選...

石墨烯因其廣泛的奇妙特性而經常被稱為“奇跡材料”。這些特性使石墨烯超越了其他添加劑材料,從此成為許多....
發表于 2023-09-12 10:17? 417次閱讀
什么是LTDF石墨烯?為什么它是復合材料的最佳選...

什么是“白色石墨烯”?白色石墨烯和石墨烯區別

六方氮化硼和石墨烯都是僅一個原子厚度的層狀二維材料,不同之處在于石墨烯結合純屬碳原子之間的共價鍵,而....
發表于 2023-09-12 09:32? 293次閱讀
什么是“白色石墨烯”?白色石墨烯和石墨烯區別

熱響應性GO納米片的優勢

基于石墨烯的二維材料由于其優異的結構、機械、電學、光學和熱性能,最近成為科學探索的焦點。其中,基于氧....
發表于 2023-09-11 11:40? 267次閱讀
熱響應性GO納米片的優勢

石墨烯發熱膜的發熱原理是怎樣的呢

目前市場上石墨烯電熱膜應用較廣 ,大家都知道,只要接通電源,發熱材料短時間內迅速升溫,達到控制器的設....
發表于 2023-09-11 10:19? 215次閱讀
石墨烯發熱膜的發熱原理是怎樣的呢

石墨烯薄膜導熱性的關鍵因素是什么

本文從石墨烯基薄膜的制備方法和影響其散熱性能的關鍵因素等方面綜述了近年來石墨烯基薄膜的研究進展。很難....
發表于 2023-09-07 10:21? 200次閱讀
石墨烯薄膜導熱性的關鍵因素是什么

石墨烯基薄膜及其復合材料在散熱方面的研究進展

引言:隨著5G通信技術的推廣和普及,散熱已經成為電子設備中的一個普遍問題。自20世紀60年代以來,隨....
發表于 2023-09-07 10:07? 310次閱讀
石墨烯基薄膜及其復合材料在散熱方面的研究進展

石墨烯旗艦:汽車技術創新

G+BOARD 與意大利的Nanesa和Centro Rierche Fiat等多家工業合作伙伴合作....
發表于 2023-09-04 15:48? 240次閱讀
石墨烯旗艦:汽車技術創新

介紹一種可行的方法和潛在的機制來輔助自組裝的轉角...

近年來,能夠生產無缺陷單層石墨烯和其他2D材料的生長技術得到了長足的發展。
發表于 2023-09-04 10:30? 161次閱讀
介紹一種可行的方法和潛在的機制來輔助自組裝的轉角...

高力波課題組實現無缺陷石墨烯穩定封裝氫分子

由于原子尺度的限制,二維層狀材料中的層間空間可以用于研究離子、原子和分子在限域空間中的異常行為,如無....
發表于 2023-09-04 10:25? 290次閱讀
高力波課題組實現無缺陷石墨烯穩定封裝氫分子

石墨烯基導熱薄膜的研究進展情況分析

CVD因具有可控、高質量生長石墨烯的優點而引起國內外關注,據報道石墨烯薄膜可在多個襯底上生長,如Fe....
發表于 2023-09-01 11:12? 133次閱讀
石墨烯基導熱薄膜的研究進展情況分析

石墨烯現行產業化的2個經典案例

不同形式的石墨烯材料可根據應用和技術的要求,選用不同制備方法得到。這些不同的制備方法給技術人員和產品....
發表于 2023-08-31 16:37? 192次閱讀
石墨烯現行產業化的2個經典案例

石墨烯的由來、性能及應用

石墨烯(Graphene)是一種二維碳材料,是單層石墨烯、雙層石墨烯和多層石墨烯的統稱。目前,國內將....
發表于 2023-08-31 15:47? 307次閱讀
石墨烯的由來、性能及應用

石墨烯等前沿材料產業化重點發展指導目錄發布

據了解,本次公布的第一批前沿材料產業化重點發展指導目錄聚焦已有相應研究成果、具備工程化產業化基礎、有....
發表于 2023-08-29 16:43? 351次閱讀
石墨烯等前沿材料產業化重點發展指導目錄發布

膨脹垂直石墨烯/金剛石薄膜研究進展

多孔或層狀電極材料具有豐富的納米限域環境,表現出高效的電荷儲存行為,被廣泛應用于電化學電容器。而這些....
發表于 2023-08-29 11:10? 188次閱讀
膨脹垂直石墨烯/金剛石薄膜研究進展

兩部門印發前沿材料產業化重點發展指導目錄,超導材...

8月28日,工信部和國務院國有資產監督管理委員會發布《關于印發前沿材料產業化重點發展指導目錄(第一次....
發表于 2023-08-29 09:34? 210次閱讀
兩部門印發前沿材料產業化重點發展指導目錄,超導材...

石墨烯在傳感器上的應用

“石墨烯”又名“單層石墨片”,是指一層密集的、包裹在蜂巢晶體點陣上的碳原子,碳原子排列成二維結構,與....
發表于 2023-08-28 14:58? 252次閱讀
石墨烯在傳感器上的應用

武漢象印科技完成數千萬元Pre-A輪融資,德州儀...

? 傳感新品 【華東師范大學:研發防水自清潔CBNP/石墨烯應變傳感器,用于多功能應用】 可穿戴應變....
發表于 2023-08-24 08:45? 256次閱讀
武漢象印科技完成數千萬元Pre-A輪融資,德州儀...

石墨烯旗艦項目:八大商業應用成功案例

Sixonia Tech GmbH 的專有技術是一種電化學剝離方法,從石墨中提取少量石墨烯,并同時用....
發表于 2023-08-23 15:10? 355次閱讀
石墨烯旗艦項目:八大商業應用成功案例

石墨烯改性導熱復合材料的研究進展

隨著集成技術和微電子技術的發展,功率元器件的功率密度不斷增長,而電子元器件及設備逐漸趨向于集成化和小....
發表于 2023-08-23 10:39? 108次閱讀
石墨烯改性導熱復合材料的研究進展

石墨烯的應用領域和前景

石墨烯有助于解決世界水危機,由石墨烯制成的膜可以讓水通過,但把鹽過濾掉。換句話說,石墨烯可以徹底改變....
發表于 2023-08-23 09:47? 134次閱讀
石墨烯的應用領域和前景

石墨烯力學特性在國防領域的應用有哪些

使用輕型的頭盔、防彈夾克、西服、靴子等人員防護設備,對于減輕士兵的后勤負擔,而不影響這種設備對爆炸和....
發表于 2023-08-22 09:28? 99次閱讀
石墨烯力學特性在國防領域的應用有哪些

研發PAM@SiO2-NH2/石墨烯導電水凝膠傳...

傳感新品 【長春工業大學:研發PAM@SiO2-NH2/石墨烯導電水凝膠傳感器】 導電水凝膠因其在軟....
發表于 2023-08-21 17:24? 595次閱讀
研發PAM@SiO2-NH2/石墨烯導電水凝膠傳...

柔性印刷石墨烯基電容式多傳感器陣列,用于機器人對...

該電容式多傳感器陣列由集成在機器人抓手的臂端工具對上的接近和壓力傳感器陣列和可編程控制單元組成,是在....
發表于 2023-08-21 16:42? 390次閱讀
柔性印刷石墨烯基電容式多傳感器陣列,用于機器人對...

石墨烯/環氧樹脂復合材料的最新進展和航空應用

石墨烯添加相的不同形態對其復合材料的性能有重要影響,石墨烯的薄膜形態和其排列是研究的熱點,圖2匯總了....
發表于 2023-08-21 15:36? 218次閱讀
石墨烯/環氧樹脂復合材料的最新進展和航空應用

首次發現!石墨烯的新邊界!

石墨烯作為一種由單層碳原子構成的二維材料,憑借其卓越的電子性質引起了廣泛關注。科學家一直在積極研究石....
發表于 2023-08-21 15:32? 122次閱讀
首次發現!石墨烯的新邊界!

除了石墨烯,還有哪些神奇的新材料?

為了配制新的生物復合材料,科學家們使用二異氰酸酯對竹子樣品進行改性,發現它降低了纖維的親水性,并增強....
發表于 2023-08-21 15:28? 276次閱讀
除了石墨烯,還有哪些神奇的新材料?

石墨烯在鋰離子電池中的應用有哪些

鋰離子電池具有能量密度高、可逆容量大、開路電壓大、使用壽命長等特點。在對鋰離子電池電極材料的研究過程....
發表于 2023-08-18 10:25? 62次閱讀
石墨烯在鋰離子電池中的應用有哪些

石墨烯的制備方法有哪些 石墨烯膜提升智能手機散熱...

石墨烯內部碳原子的排列方式與石墨單原子層一樣以sp2雜化軌道成鍵,并有如下的特點:碳原子有4個價電子....
發表于 2023-08-18 10:15? 295次閱讀
石墨烯的制備方法有哪些 石墨烯膜提升智能手機散熱...

什么是石墨烯涂層?石墨烯涂層如何應用?

石墨烯涂層是涂在材料表面的一層薄薄的石墨烯。石墨烯是碳原子的二維晶格,具有高機械強度(1100 GP....
發表于 2023-08-17 11:37? 271次閱讀
什么是石墨烯涂層?石墨烯涂層如何應用?

石墨烯在5G無線通信中應用分析

GAF超寬帶天線覆蓋3.7 GHz至67 GHz的頻率范圍,帶寬(BW)為63.3 GHz,比銅箔天....
發表于 2023-08-17 09:33? 217次閱讀
石墨烯在5G無線通信中應用分析

開創性新方法!用于高性能石墨烯電子產品!

該研究首次應用紫外光輔助原子層沉積(UV-ALD)技術于石墨烯表面,并展示了利用UV-ALD沉積Al....
發表于 2023-08-16 15:52? 165次閱讀
開創性新方法!用于高性能石墨烯電子產品!

石墨烯堆疊的2D系統的外部極限

近年來,通過將兩片稍微歪斜的石墨烯堆疊在一起,產生了非凡的物理現象,包括可調超導性、量子記憶,以及涉....
發表于 2023-08-16 10:51? 199次閱讀
石墨烯堆疊的2D系統的外部極限

石墨烯在柔性傳感器領域的應用有哪些

傳感器分為柔性傳感器和非柔性傳感器,非柔性傳感器應用很廣泛,但是存在很多弊端和局限性,這類傳感器的主....
發表于 2023-08-16 09:56? 158次閱讀
石墨烯在柔性傳感器領域的應用有哪些

石墨烯是什么材料有什么功能

他們從高定向熱解石墨中剝離出石墨片,然后將薄片的兩面粘在一種特殊的膠帶上,撕開膠帶,就能把石墨片一分....
發表于 2023-08-16 09:40? 409次閱讀
石墨烯是什么材料有什么功能

高導熱石墨烯膜提升電子產品散熱性能

引言:石墨烯(Graphene)是一種以sp2雜化連接的碳原子緊密堆積成單層二維蜂窩狀晶格結構的新材....
發表于 2023-08-15 10:27? 214次閱讀
高導熱石墨烯膜提升電子產品散熱性能

Nature Materials:單層石墨烯一維...

目前絕大多數研究采用機械剝離和逐層轉移的物理方法對轉角石墨烯樣品進行制備,然而,該方法存在條件苛刻、....
發表于 2023-08-14 11:37? 203次閱讀
Nature Materials:單層石墨烯一維...

石墨烯負載金屬氧化物催化劑的制備方法

石墨烯作為一種特殊的二維材料,具有高導電性、 高比表面積以及優異的化學和機械穩定性,金屬氧化物納米顆....
發表于 2023-08-11 10:45? 82次閱讀
石墨烯負載金屬氧化物催化劑的制備方法

石墨烯晶體管:未來電子產業的革命性之星

在近年來,隨著科技和物理學界的飛速發展,石墨烯成為了一個熱門話題。它的出現為各種現代電子設備和技術帶....
發表于 2023-08-11 10:25? 723次閱讀
石墨烯晶體管:未來電子產業的革命性之星

石墨烯改性導熱復合材料研究進展

隨著集成技術和微電子技術的發展,功率元器件的功率密度不斷增長,而電子元器件及設備逐漸趨向于集成化和小....
發表于 2023-08-09 16:05? 198次閱讀
石墨烯改性導熱復合材料研究進展

石墨烯氣體傳感器的發展及技術類型有哪些

大多數基于石墨烯的氣體傳感器具有薄的層結構。一個單獨的原始或CVD石墨烯片可以被轉移到一個剛性或柔性....
發表于 2023-08-09 10:10? 140次閱讀
石墨烯氣體傳感器的發展及技術類型有哪些

石墨烯/聚酰亞胺復合材料的制備方法

將石墨烯填充到聚酰亞胺材料中制備復合材料,能較大程度地提升聚酰亞胺復合材料的力學性能、熱力學性能以及....
發表于 2023-08-08 12:27? 203次閱讀
石墨烯/聚酰亞胺復合材料的制備方法

石墨烯增強——未來的材料

瑞典的GraphMaTech公司旨在減少對銅的需求,用石墨烯取代部分銅。與單獨的銅相比,銅-石墨烯復....
發表于 2023-08-07 15:17? 414次閱讀
石墨烯增強——未來的材料

室溫超導到底是什么意思 超導材料還有哪些種類

超導若能實現工程應用,意味著人類能源儲存和傳輸效率產生顛覆性改變;而超導材料的應用,也意味著在計算機....
發表于 2023-08-07 11:08? 468次閱讀
室溫超導到底是什么意思 超導材料還有哪些種類

南孚完成彎道超車 發布首款石墨烯紐扣電池

南孚公司近期推出了一款備受用戶青睞的石墨烯紐扣電池,具有強勁且持久的電力輸出。石墨烯作為一種珍貴材料....
發表于 2023-08-03 17:20? 808次閱讀
南孚完成彎道超車 發布首款石墨烯紐扣電池

利用離子散射引發的彩虹效應觀測石墨烯中的缺陷特征...

雖然還有其他研究石墨烯瑕疵的方法,但這些方法都有缺點。例如,拉曼光譜無法區分某些缺陷類型,而高分辨率....
發表于 2023-08-03 15:10? 254次閱讀
利用離子散射引發的彩虹效應觀測石墨烯中的缺陷特征...

新技術#石墨嵌入緩和 PCB 熱量

Teledyne Labtech 將合成石墨薄層嵌入射頻和微波 PCB 的方法可以有效地將熱量從有源器件中傳導出去。據該公司稱,...
發表于 2022-04-01 16:01? 9555次閱讀
新技術#石墨嵌入緩和 PCB 熱量

如何去實現一種石墨烯CMOS技術?

什么是硅基CMOS技術? 如何去實現一種石墨烯CMOS技術? ...
發表于 2021-06-17 07:05? 2743次閱讀
如何去實現一種石墨烯CMOS技術?

如何用石墨烯電導率變化實現太赫茲調制

用石墨烯電導率變化實現太赫茲調制
發表于 2020-12-31 06:05? 2114次閱讀
如何用石墨烯電導率變化實現太赫茲調制

VC液冷+石墨烯膜的散熱技術解析

  近年來,隨著手機游戲的興起,智能手機作為游戲機的功能也越來越突出,因此在智能手機領域中出現了游戲手機的新品...
發表于 2020-12-18 07:34? 10074次閱讀
VC液冷+石墨烯膜的散熱技術解析

基于石墨烯的通信領域應用

一、引言 2010年,諾貝爾物理學被兩位英國物理學家安德烈·海姆和康斯坦丁·諾沃肖諾夫奪得,他們因制備出了石墨烯而...
發表于 2019-07-29 07:48? 3827次閱讀
基于石墨烯的通信領域應用

半導體材料那些事

好像***最近去英國還專程看了華為英國公司的石墨烯研究,搞得國內好多石墨烯材料的股票大漲,連石墨烯內褲都跟著炒作...
發表于 2019-07-29 06:40? 5581次閱讀
半導體材料那些事

關于石墨烯的全面介紹

碳原子呈六角形網狀鍵合的材料“石墨烯”具有很多出色的電特性、熱特性以及機械特性。具體來說,具有在室溫下也高達20...
發表于 2019-07-29 06:27? 7039次閱讀
關于石墨烯的全面介紹

石墨烯的基本特性和制備方法

1 引言 人們常見的石墨是由一層層以蜂窩狀有序排列的平面碳原子堆疊而形成的,石墨的層間作用力較弱,很容易互相剝離...
發表于 2019-07-29 06:24? 3385次閱讀
石墨烯的基本特性和制備方法

場效應管概念

場效應管(FET)是一種具有pn結的正向受控作用的有源器件,它是利用電場效應來控制輸出電流的大小,其輸入端pn一般工...
發表于 2019-07-29 06:01? 3673次閱讀
場效應管概念

石墨烯在太陽能電池板的應用

傳統的太陽能電池板面臨著一些問題,比如光污染。太陽能電站的電池板反射的光線能對飛過的鳥類造成傷害,對此像特斯拉...
發表于 2019-07-16 08:28? 2629次閱讀
石墨烯在太陽能電池板的應用
主站蜘蛛池模板: 婷婷四房综合激情五月性色 | 啪啪午夜视频 | 玖玖爱在线播放 | 轻点太大了好深好爽h文 | 色综合久久丁香婷婷 | 在线观看精品国产福利片100 | 成人影院久久久久久影院 | 亚洲第一成人在线 | 在线天堂中文字幕 | 欧美a网站| 久久综合九色综合97_ 久久久 | 999www成人免费视频 | 视频在线观看一区二区三区 | 激情在线视频 | 国产美女一级高清免费观看 | 天天综合网天天做天天受 | 黑人又大又粗又长又深受不了 | 美女扒开尿口给男人桶动态图 | 国产黄大片在线观看 | 色老头性xxxx老头视频 | 亚洲福利在线视频 | 91牛牛| 亚洲欧美天堂网 | 久久久美女视频 | 中文字幕1区2区 | 亚洲最大色网 | 亚洲一区小说区中文字幕 | 色老头久久久久 | 色播在线永久免费视频网站 | ts人妖另类国产 | 亚洲人成毛片线播放 | 亚洲国产七七久久桃花 | 综合7799亚洲伊人爱爱网 | 国产亚洲午夜精品a一区二区 | 欧美日本一区 | 美女扒开尿口给男人捅 | 狠狠摸狠狠操 | 一级做a爱 | 日本免费黄色录像 | 亚洲成a人片在线观看www | 亚洲一区二区电影 |