74HC14是施密特觸發器。正向閾值指輸入端電壓由低變高達到輸出翻轉時的值。反向閾值指輸入電壓由高到低變化輸出翻轉時的輸入電壓值。正向輸入閾值電壓是輸入大于這個電壓時,輸出為低電平。反向輸入閾值電壓是輸入低于這個電壓時,輸出為高電平。
2018-10-24 09:30:36
16608 ![](https://file.elecfans.com/web1/M00/69/0B/pIYBAFvP0H-AQbqNAABo9wuYk5A209.png)
本文將重點討論使用雙極性結型晶體管(BJT)和NMOS晶體管的穩定電流源。
2022-08-01 09:03:57
1150 ![](https://file.elecfans.com/web2/M00/1E/A0/poYBAGGXcW6ASDw9AAF-GpD4jUU600.jpg)
碳化硅SiC MOSFET的閾值電壓穩定性相對Si材料來講,是比較差的,對應用端的影響也很大。
2023-05-30 16:06:18
1175 ![](https://file1.elecfans.com/web2/M00/88/E0/wKgaomR1rmGAV5wGAABuAfc6nh0453.jpg)
傳輸門是由外部施加的邏輯電平控制的NMOS和PMOS晶體管組成的雙向開關。
2023-08-10 09:02:20
1943 ![](https://file1.elecfans.com/web2/M00/8F/F9/wKgZomTUNyWAMGFHAAAq5YJI9i0918.jpg)
分析完閾值電壓的機制后,下面我們重點分析一下MOS器件的電壓、電流與閾值電壓之間的關系。
2023-11-29 14:42:33
999 ![](https://file1.elecfans.com/web2/M00/B1/C4/wKgaomVm3SiAVr64AAABrIrJgN8448.jpg)
輸出特性曲線:固定VGS值,且數值大于閾值電壓時,MOS晶體管的源漏電流IDS隨VDS的變化曲線。
2023-12-01 14:13:13
1564 ![](https://file1.elecfans.com/web2/M00/B3/F0/wKgZomVpeVKAVeo5AABlJQ1JhRY245.jpg)
描述dcreg12v3a mj2955 lm78122955 MJ晶體管的作用是作為電流放大器,使輸出電流達到安培單位,通常如果沒有晶體管這個電路只能達到毫安單位。出于電源的目的,晶體管必須不斷地
2022-09-05 06:18:39
。 8050晶體管及其等效的8550晶體管設計用于低功耗推挽放大器應用中的互補晶體管對。通常,8050晶體管是2瓦放大器,最大集電極-發射極電流為1.5安培,最大集電極-發射極電壓為25伏。 基本晶體管
2023-02-16 18:22:30
TR的情況,除此之外,還有5V以下(突破此耐壓范圍,會發生hFE低下等特性的劣化,請注意。)VCE(sat)及VBE(ON)的特性沒有太大的變化關于封裝功率容許功定義:是指由于輸入晶體管的電壓、電流
2019-04-09 21:27:24
晶體管低頻電壓放大電路:實驗目的 1.加深理解放大電路的工作原理; 2.掌握放大電路靜態工作點的調整和測量方法; 3.學會測量電壓放大倍數、輸入電阻、輸出電阻以及頻率特性。 實驗原理&
2009-09-08 08:54:00
"。功率計算的積分公式計算基于電流I和電壓V的a-b間的積分功率導通電阻元件溫度計算方法什么是晶體管?目錄晶體管?由來概略晶體管數字晶體管的原理MOSFET特性導通電阻安全使用晶體管的選定方法元件溫度計算方法負載開關常見問題
2019-04-15 06:20:06
晶體管分類 按半導體材料和極性分類 按晶體管使用的半導體材料可分為硅材料晶體管和鍺材料晶體管。按晶體管的極性可分為鍺NPN型晶體管、鍺PNP晶體管、硅NPN型晶體管和硅PNP型晶體管。 按結構
2010-08-12 13:59:33
晶體管的電流方向相反。如果使晶體管以開關方式工作,需要加大基極電流晶體管VCE的飽和狀態當晶體管處于開關工作方式時,因為電源電壓和集電極電阻的限制,集電極IC不足以提供hFEIB大小的電流。因此
2017-03-28 15:54:24
、電壓/電流反饋放大電路、晶體管/FET開關電路、模擬開關電路、開關電源、振蕩電路等。上冊則主要介紹放大電路的工作、增強輸出的電路、功率放大器的設計與制作、拓寬頻率特性等。`
2019-03-06 17:29:48
,PMOS指的是P型MOSFET。注意,MOS中的柵極Gate可以類比為晶體管中的b極,由它的電壓來控制整個MOS管的導通和截止狀態。 NMOS電路符號如下圖: PMOS電路符號如下
2021-01-13 16:23:43
本帖最后由 elecfans電子發燒友 于 2017-10-24 22:44 編輯
在四種常用晶體管開關電路(2種NMOS,2種PMOS)一文中,介紹了晶體管構成的開關電路。這里我們使用所述
2016-08-30 04:32:10
,按動相應的hFE鍵,再從表中讀出hFE值即可。 3.反向擊穿電壓的檢測 晶體管的反向擊穿電壓可使用晶體管直流參數測試表的V(BR)測試功能來測量。測量時,先選擇被測晶體管的極性,然后將晶體管插入測試
2012-04-26 17:06:32
晶體管測量模塊的基本特性有哪些?晶體管測量模塊的基本功能有哪些?
2021-09-24 07:37:23
`非常不錯的晶體管電路設計書籍!`
2016-11-08 14:12:33
等同hFE,甚至相差很大,所以不要將其混淆。β和hFE大小除了與晶體管結構和工藝等有關外,還與管子的工作電流(直流偏置)有關,工作電流IC在正常情況下改變時,β和hFE也會有所變化;若工作電流變得過小或
2018-06-13 09:12:21
晶體管的主要參數有哪些?晶體管的開關電路是怎樣的?
2021-06-07 06:25:09
本篇開始將為大家介紹“Si晶體管”。雖然統稱為“Si晶體管”,不過根據制造工藝和結構,還可分為“雙極”、“MOSFET”等種類。另外,還可根據處理的電流、電壓和應用進行分類。下面以“功率元器件”為主
2018-11-28 14:29:28
的電流、電壓和應用進行分類。 下面以“功率元器件”為主題,從眾多晶體管中選取功率類元器件展開說明。其中,將以近年來控制大功率的應用中廣為采用的MOSFET為主來展開。 先來看一下晶體管的分類與特征
2020-06-09 07:34:33
是"增幅"和"開關"。比如收音機。放大空中傳播的極微弱信號,使音箱共鳴。這一作用便是晶體管的增幅作用。不改變輸入信號的波形,只放大電壓或電流。這是模擬信號的情況,但是
2019-07-23 00:07:18
晶體管開關能力的方法。在這樣的大功率電路中,存在的主要問題是布線。很高的開關速度能在很短的連接線上產生相當高的干擾電壓。簡單和優化的基極驅動造就的高性能今日的基極驅動電路不僅驅動功率晶體管,還保護功率
2018-10-25 16:01:51
是"增幅"和"開關"。比如收音機。放大空中傳播的極微弱信號,使音箱共鳴。這一作用便是晶體管的增幅作用。不改變輸入信號的波形,只放大電壓或電流。這是模擬信號的情況,但是
2019-05-05 00:52:40
較低的正向電壓(即正向偏置電壓),集電結(B、C極之間)要加上較高的反向電壓(即反向偏置電壓)。晶體管各極所加電壓的極性見圖5-5。
2013-08-17 14:24:32
功率、集電極最大電流、最大反向電壓、電流放大系數等參數及外地人形尺寸等是否符合應用電路的要求。 2.末級視放輸出管的選用彩色電視機中使用的末級視放輸出管,應選用特征頻率高于80MHZ的高頻晶體管
2012-01-28 11:27:38
TR的情況,除此之外,還有5V以下(突破此耐壓范圍,會發生hFE低下等特性的劣化,請注意。)VCE(sat)及VBE(ON)的特性沒有太大的變化關于封裝功率容許功定義:是指由于輸入晶體管的電壓、電流
2019-05-09 23:12:18
;nbsp; 晶體管(transistor)是一種固體半導體器件,可以用于檢波、整流、放大、開關、穩壓、信號調制和許多其它功能。晶體管作為一種可變開關,基于輸入的電壓,控制流出的電流,因此晶體管可做為
2010-08-12 13:57:39
技術亞閾值漏電流是靜態功耗產生的主要原因之一,降低亞閾值漏電流將有效地降低芯片的靜態功耗。亞閾值漏電流的解析模型如下公式所示:Vt為閾值電壓,n為亞閾值擺幅系數,W為晶體管的寬度,L為長度,μ為電子
2020-04-28 08:00:00
電壓(與功率MOSFET的低導通電阻相當)和較快的開關特性的晶體管。盡管其具有較快的開關特性,但仍比不上功率MOSFET,這是IGBT的弱點。【功率元器件的基本結構與特點
2019-05-06 05:00:17
為什么PMOS的閾值電壓要高于NMOS呢?下面是我用HSPICE仿真的代碼.opt scale=0.1u * Set lambdamp drainp gatep Vdd Vdd pch l=2 w
2018-11-15 14:00:50
短路,只有一個端子。它是一個三端器件:源極、漏極和柵極。閾值電壓(Vth)沒有外部控制。 獨立柵極 FET(IG 鰭式場效應晶體管)是一種四端子器件(圖 7)。這種布置是一種雙柵極器件,其柵極通過掩蔽
2023-02-24 15:20:59
MOSFET的VGS(th):柵極閾值電壓MOSFET的VGS(th):柵極閾值電壓是為使MOSFET導通,柵極與源極間必需的電壓。也就是說,VGS如果是閾值以上的電壓,則MOSFET導通。可能有
2019-05-02 09:41:04
求大神相助,Multisim里面雪崩晶體管的過壓擊穿怎么放著那,當我設的電壓已經大于了Vcbo滯后還是不見晶體管導通。
2014-08-08 10:42:58
的比例關系。2)偏置電路 當晶體管用于實際的放大電路時,還需要添加合適的偏置電路。這有幾個原因。首先,由于晶體管的BE結(相當于二極管)的非線性,輸入電壓達到一定水平后必須產生基極電流(對于硅管,通常
2023-02-08 15:19:23
集電極電流的公式與用于等效 NPN 晶體管的公式相同,并給出如下。NPN和PNP晶體管之間的基本區別在于晶體管結的適當偏置,因為電流和電壓極性總是相互對立的。因此,在上述電路中,Ic = Ie -Ib
2023-02-03 09:44:48
小于N溝道MOS晶體管。此外,P溝道MOS晶體管閾值電壓的絕對值一般偏高,要求有較高的工作電壓。它的供電電源的電壓大小和極性,與雙極型晶體管——晶體管邏輯電路不兼容。PMOS因邏輯擺幅大,充電放電過程長
2021-10-28 10:07:00
)= + 25°CSGN19H181M1H砷化鎵晶體管SGN19H240M1H砷化鎵晶體管SGN21H180M1H砷化鎵晶體管SGN21H121M1H砷化鎵晶體管SGN21H181M1H砷化鎵晶體管
2021-03-30 11:32:19
STM32是3.3V供電的芯片,在用AD的時候,閾值電壓能否接到0-5V上?
2013-02-28 18:18:59
。晶體管作為一種可變開關,基于輸入的電壓,控制流出的電流,因此晶體管可做為電流的開關,和一般機械開關(如Relay、switch)不同處在于晶體管是利用電訊號來控制,而且開關速度可以非常之快,在實驗室中
2010-08-13 11:36:51
multisim仿真中高頻晶體管BFG35能用哪個晶體管來代替,MFR151管子能用哪個來代替?或是誰有這兩個高頻管子的原件庫?求大神指教
2016-10-26 11:51:18
PNP和NPN兩種,一般在信號源電壓較低,又允許從信號源取較多電流的條件下,應優先選用三極管。二、場效應晶體管定義:場效應晶體管(FET)簡稱場效應管,也稱為單極型晶體管,主要有兩種類型,JFET管
2019-04-08 13:46:25
互補晶體管的匹配
2019-10-30 09:02:03
類型。3.2 晶體管的種類及其特點》巨型晶體管GTR是一種高電壓、高電流的雙極結型晶體管(BJT),因此有時被稱為功率BJT。特點:電壓高,電流大,開關特性好,驅動功率高,但驅動電路復雜;GTR和普通雙極結型
2023-02-03 09:36:05
的輸入阻抗。 晶體管通常遵循與單個晶體管相同的設計規則,但有一些限制。它需要更高的基極發射極電壓才能導通,通常是單個晶體管的兩倍。它的關斷時間要長得多,因為輸出晶體管基極電流不能主動關斷。通過在輸出晶體管
2023-02-16 18:19:11
寬度是不可能的。 翅片厚度是一個關鍵參數,因為它控制短通道行為和器件的亞閾值擺幅。亞閾值擺幅測量晶體管的效率。正是柵極電壓的變化使漏極電流增加了一個數量級。 圖1.鰭式場效應晶體管尺寸
2023-02-24 15:25:29
輸入一起用來測量集電極電流。圖2.NMOS零增益放大器面包板電路程序步驟零增益放大器可用于創建穩定的電流源。現在,當W1所表示的輸入電源電壓變化時,晶體管Q1的集電極所看到的電壓更為穩定,因此可以將其
2021-11-01 09:53:18
晶體管,基極上的電壓必須低于發射極上的電壓。像這樣的基本電路通常將發射器連接到電源的加號。通過這種方式,您可以判斷發射極上的電壓。PNP 晶體管如何開啟?PNP 和 NPN 晶體管的端子電阻值然后,我們
2023-02-03 09:45:56
,進而使SCR導通。
實驗中:穩壓管閾值電壓較大時SCR可正常導通;但是穩壓管閾值小的時候,SCR始終不通,后端電路一直有漏電流。(如圖所示穩壓管閾值電壓為42V)
2023-10-10 08:57:00
單極型晶體管也稱場效應管,簡稱FET(FieldEffectTransistor)。它是一種電壓控制型器件,由輸入電壓產生的電場效應來控制輸出電流的大小。它工作時只有一種載流子(多數載流子)參與
2020-06-24 16:00:16
各位高手,小弟正在學習單結晶體管,按照網上的電路圖做的關于單結晶體管的仿真,大多數都不成功,請問誰有成功的單結晶體管的仿真仿真啊,可以分享下嗎。
2016-03-04 09:15:06
的第一個電路。 本文將展示四種晶體管開關電路,其中2種使用NMOS,2種使有PMOS。 在電路設計過程中,有時需要“獨立”控制幾個開關的通與斷。例如構造某種波形。晶體管開關能夠實現一些開關的通與斷不會
2016-08-30 01:01:44
必須將基端子接地,如圖6所示。 圖6.PNP晶體管的開關電路 用于計算集電極電流、基極電阻和電壓的PNP晶體管方程與NPN計算中使用的公式相同。區別在于開關電流。對于PNP,開關電流是源電流
2023-02-20 16:35:09
什么是微波功率晶體管?如何提高微波功率晶體管可靠性?
2021-04-06 09:46:57
~3.3nf。當Nb上端產生一個正的驅動電壓時,由于電容兩端電壓不能突變,上電瞬間電容如同短路,因此可認為為VT1提供了很大的正向基極電流,使晶體管迅速導通。之后,電容CB被充電至激勵電壓的峰值而進入穩態
2020-11-26 17:28:49
電壓,低溫)作為最快的一種情況,而把(slow n,slow p,低電壓,高溫)作為最慢的一種情況。但是管子的閾值電壓與溫度成反比,也就是低溫時管子的閾值電壓會變高,而使得管子變慢,這就與上面的結論矛盾
2021-06-24 08:01:38
來至網友的提問:如何選擇分立晶體管?
2023-11-24 08:16:54
、電壓用示波器確認晶體管上的電壓、電流。需要全部滿足規格書上記載的額定值,特別應該確認下列項目。特別應該確認的項目晶體管的種類電壓電流雙極晶體管集電極發射極間電壓 : VCE集電極電流 : IC數字晶體管
2019-05-05 09:27:01
晶體管依照用途大致分為高頻與低頻,它們在型號上的大致區別是什么?例如《晶體管電路設計》中列舉的:高頻(2SA****,2SC*****)、低頻(2SB****,2SD****)。現在產品設計中最常用的型號是哪些?
2017-10-11 23:53:40
直流電流增益率的關系式GI:數字晶體管的直流電流增益率GI=IO/IinhFE=IC/IBIO=IC , Iin=IB +IR2, IB=IC/hFE , IR2=VBE/R2電壓關系式 VIN
2019-04-22 05:39:52
選定方法數字晶體管的型號說明IO和IC的區別GI和hFE的區別VI(on)和VI(off)的區別關于數字晶體管的溫度特性關于輸出電壓 - 輸出電流特性的低電流領域(數字晶體管的情況)關于數字晶體管
2019-04-09 21:49:36
有沒有關于晶體管開關的電路分享?
2021-03-11 06:23:27
晶體管的代表形狀晶體管分類圖:按照該分類,掌握其種類1. 按結構分類根據工作原理不同分類,分為雙極晶體管和單極晶體管。雙極晶體管雙是指Bi(2個)、極是指Polar(極性)。雙極晶體管,即流經構成
2019-05-05 01:31:57
重要作用,這將在下面進一步展開。晶體管開啟。像場效應晶體管一樣,通過施加高于resp的柵極 - 源極電壓。低于閾值電壓。在關斷狀態下,p-GaN柵極通過提升AlGaN-GaN結的電位來耗盡下面的電子氣。在
2023-02-27 15:53:50
存在傳導損耗,這與晶體管的導通電阻RDS(on)有關。在狀態5時,驅動信號VGSL變低,晶體管的通道通過硬開關關閉。由于峰值勵磁電流Ilm_pk,存在電流和電壓交交叉開關損耗。該損耗取決于晶體管的特性
2023-02-27 09:37:29
哪位高人能推薦下NMOS管型號:要求:用作高速開關(幾K到幾十KHZ),閾值電壓小于等于3V,希望哪位大俠給指點下啊
2011-03-02 14:21:23
特性,我們將首先從GaN器件驅動電路設計開始介紹。 正確設計驅動電路 諸如英飛凌科技 CoolGaN?600 V HEMT之類的GaN晶體管采用了柵極p型摻雜工藝,這會將器件的柵極閾值電壓轉換
2021-01-19 16:48:15
這個達林頓晶體管廠家是哪家
2022-05-30 16:36:56
遲滯比較器的閾值電壓除了由我的電阻參數設定 還要其他因素嗎?我做的實驗中顯示我的設定值與實際值在某些情況下相差挺大的,我采用的是LM339這款比較器芯片。比如 我設定的值為VTL=1.5V、VTH=2.5V時,通過示波器觀察的到的VTL=2.48V、VTH=3.64V。
2019-04-01 16:51:27
;span]除了使用多柵結構提高器件的柵控能力和S小于60mV/decade的TFET,另一種減小集成電路功耗的方法是降低晶體管的工作電壓Vdd。傳統的MOSFET等比例縮小原則假設閾值電壓也能等比例
2018-10-19 11:08:33
(PTAT)的電流,利用這個電流與一個工作在飽和區的二極管連接的NMOS晶體管的閾值電壓進行補償,實現了一個低溫漂、高精度的基準電壓源的設計。 1 NMOS晶體管的構成 兩個工作在弱反型區的NMOS晶體管
2018-11-30 16:38:24
面向BTI特征分析的在運行中閾值電壓測量
2017-01-22 13:38:08
7 閾值電壓 (Threshold voltage):通常將傳輸特性曲線中輸出電壓隨輸入電壓改變而急劇變化轉折區的中點對應的輸入電壓稱為閾值電壓。在描述不同的器件時具有不同的參數。如描述場發射的特性時,電流達到10mA時的電壓被稱為閾值電壓。
2017-11-27 17:18:43
67572 ![](https://file1.elecfans.com//web2/M00/A6/F8/wKgZomUMQYqAJhAYAAAm3c1JDbo811.png)
關于 MOSFET 的 W 和 L 對其閾值電壓 Vth 的影響,實際在考慮工藝相關因素后都是比較復雜,但是也可以有一些簡化的分析,這里主要還是分析當晶體管處在窄溝道和短溝道情況下,MOSFET 耗盡區的電荷的變化,從而分析其對晶體管的閾值電壓的作用。
2019-06-18 17:19:46
35146 ![](https://file.elecfans.com/web1/M00/96/A5/o4YBAF0IrKWAWx_VAACNpvvAGeM488.png)
本文報道了一個深入研究的負閾值電壓不穩定性的gan-on-si金屬絕緣體半導體高電子遷移率晶體管部分凹陷algan。基于一組在不同溫度下進行的應力/恢復實驗,我們證明:1)在高溫和負柵偏壓(-10v
2019-10-09 08:00:00
2 本文報道了algan/gan高電子遷移率晶體管(hemt)在反向柵偏壓作用下閾值電壓的負漂移。該器件在強pinch-off和低漏源電壓條件下偏置一定時間(反向柵極偏置應力),然后測量傳輸特性。施加
2019-10-09 08:00:00
10 Vt roll-off核心是(同一個工藝節點下面)閾值電壓與柵長之間的關系。當溝道長度比較長的時候,Vt值是比較穩定的。隨著溝道長度的減小,閾值電壓會下降(對于PMOS而言是絕對值的下降)。
2022-12-30 15:14:41
1332 精確控制集成電路中MOSFET的閾值電壓對電路的可靠性至關重要。通常情況下,閾值電壓是通過向溝道區的離子注入來調整的。
2023-02-09 14:26:36
1147 此外,襯底偏壓也能影響閾值電壓。當在襯底和源極之間施加反向偏壓時,耗盡區被加寬,實現反轉所需的閾值電壓也必須增加,以適應更大的Qsc。
2023-02-09 14:26:38
1661 nMOS晶體管導通是通過溝道里面的電子產生電流的,一般NMOS的源極接襯底,共同接到地,漏極到源極加上正電壓,電子從源極向漏極流動,我們取電流的方向和電子流動的方向相反,所以電流是漏極流到源極。
2023-02-11 16:41:54
1979 ![](https://file.elecfans.com/web2/M00/90/8D/pYYBAGPnE6mAabiLAAPTl0CwDAQ725.png)
Vt指的是MOS管的閾值電壓(threshold voltage)。具體定義(以下圖NMOS為例):當柵源電壓(Vgs)由0逐漸增大,直到MOS管溝道形成反型層(圖中的三角形)所需要的電壓為閾值電壓。
2023-03-10 17:43:11
4541 MOS 晶體管正在按比例縮小,以最大限度地提高其在集成電路內的封裝密度。這導致氧化層厚度的減少,進而降低了 MOS 器件的閾值電壓。在較低的閾值電壓下,泄漏電流變得很大,并有助于功耗。這就是為什么我們必須了解 MOS 晶體管中各種類型的泄漏電流的原因。
2023-03-24 15:39:19
1789 ![](https://file1.elecfans.com/web2/M00/81/E8/wKgaomQdU12ARUGAAAD3oqiy9G4485.jpg)
由于SiC MOSFET與Si MOSFET特性的不同,SiC MOSFET的閾值電壓具有不穩定性,在器件測試過程中閾值電壓會有明顯漂移,導致其電性能測試以及高溫柵偏試驗后的電測試結果嚴重依賴于測試
2023-05-09 14:59:06
853 ![](https://file.elecfans.com/web2/M00/A3/D7/poYBAGRZ7bCACW6iAALpPRbNhLs607.png)
如果你能看到下面的方程式-我相信你可以很容易地弄清楚閾值電壓對電池延遲的影響。(注:以下電阻公式是關于NMOS的。您也可以為PMOS導出類似的公式(只需將下標“n”替換為“p”)。
2023-09-07 10:03:59
649 ![](https://file1.elecfans.com/web2/M00/A1/F3/wKgZomT5L4aAfQE0AAA3eWpWH3k109.jpg)
影響MOSFET閾值電壓的因素? MOSFET(金屬氧化物半導體場效應管)是一種常用的半導體器件,具有高輸入阻抗、低輸出阻抗、高增益等特點。MOSFET的閾值電壓是決定其工作狀態的重要參數,影響著
2023-09-17 10:39:44
6679
評論