PFC簡(jiǎn)介
PFC的英文全稱為“PowerFactorCorrection”,意思是“功率因數(shù)校正”,作用是對(duì)輸入電流波形進(jìn)行控制,使其同步輸入電壓波形。功率因數(shù)指的是有效功率與總耗電量(視在功率)之間的關(guān)系,也就是有效功率除以總耗電量(視在功率)的比值。基本上功率因素可以衡量電力被有效利用的程度,當(dāng)功率因素值越大,代表其電力利用率越高。開關(guān)電源是一種電容輸入型電路,其電流和電壓之間的相位差會(huì)造成交換功率的損失,此時(shí)便需要PFC電路提高功率因數(shù)。目前的PFC有兩種,一種為被動(dòng)式PFC(也稱無源PFC)和主動(dòng)式PFC(也稱有源式PFC)。
PFC電路分類與作用
1、被動(dòng)式PFC
被動(dòng)式PFC一般分“電感補(bǔ)償式”和“填谷電路式(ValleyFillCircuit)”“電感補(bǔ)償方法”是使交流輸入的基波電流與電壓之間相位差減小來提高功率因數(shù),被動(dòng)式PFC包括靜音式被動(dòng)PFC和非靜音式被動(dòng)PFC。被動(dòng)式PFC的功率因數(shù)只能達(dá)到0.7~0.8,它一般在高壓濾波電容附近。“
填谷電路式”屬于一種新型無源功率因數(shù)校正電路,其特點(diǎn)是利用整流橋后面的填谷電路來大幅度增加整流管的導(dǎo)通角,通過填平谷點(diǎn),使輸入電流從尖峰脈沖變?yōu)榻咏谡也ǖ牟ㄐ危瑢⒐β室驍?shù)提高到0.9左右,顯著降低總諧波失真。與傳統(tǒng)的電感式無源功率因數(shù)校正電路相比,其優(yōu)點(diǎn)是電路簡(jiǎn)單,功率因數(shù)補(bǔ)償效果顯著,并且在輸入電路中不需要使用體積大重量沉的大電感器。
2、主動(dòng)式PFC
主動(dòng)式PFC則由電感電容及電子元器件組成,體積小、通過專用IC去調(diào)整電流的波形,對(duì)電流電壓間的相位差進(jìn)行補(bǔ)償。主動(dòng)式PFC可以達(dá)到較高的功率因數(shù)──通常可達(dá)98%以上,但成本也相對(duì)較高。此外,主動(dòng)式PFC還可用作輔助電源,因此在使用主動(dòng)式PFC電路中,往往不需要待機(jī)變壓器,而且主動(dòng)式PFC輸出直流電壓的紋波很小,這種電源不必采用很大容量的濾波電容。
解析pfc電路基本結(jié)構(gòu)和工作原理
圖1為未加入PFC電路的整流電路的原理方框圖,圖2為工作波形。通過分析,我們可以看出.未加入PFC電路的整流電路穩(wěn)定工作以后,只有在市電電壓的正負(fù)峰值附近二極管才導(dǎo)通,產(chǎn)生脈沖電流。造成離線電源功率因數(shù)降低的原因在于電流的導(dǎo)通角太小,在半個(gè)周期內(nèi)遠(yuǎn)遠(yuǎn)小于180°,提高功率因數(shù)就要設(shè)法使電流的波形在整個(gè)周期內(nèi)追蹤電壓的波形。
既然造成導(dǎo)通角太小的原因是整流器后面接人的大容量濾波電容,有源PFC電路基本思想就是在整流器和大容量濾波電容之間加入一級(jí)初級(jí)調(diào)整,把兩者進(jìn)行隔離,此PFC初級(jí)調(diào)整變換器輸出一個(gè)基本穩(wěn)定的DC電壓,同時(shí)其輸入電流能按照和市電一樣的正弦規(guī)律變化。
圖3所示電路為加入PFC電路的基本結(jié)構(gòu)和工作原理。通過比較,我們可以比較明確看出PFC電路在電源電路結(jié)構(gòu)中的位置和作用。盡管PFC電路的具體形式繁多,不盡相同,工作模式也不一樣(CCM電流連續(xù)型、DCM不連續(xù)型、CRM臨界型),但基本的結(jié)構(gòu)大同小異,大部分都是采用升壓的boost拓?fù)浣Y(jié)構(gòu),因?yàn)檫@種電路形式優(yōu)點(diǎn)比較多。這也是一種典型的升壓開關(guān)電路,基本的思想就是前面說的把整流電路和大濾波電容分割,通過控制PFC開關(guān)管的導(dǎo)通使輸入電流能跟蹤輸入電壓的變化。工作原理并不復(fù)雜,徹底搞清楚這個(gè)基本電路的原理,就能觸類旁通,給獨(dú)立分析電路打下基礎(chǔ)。在這個(gè)電路中,PFC電感L在MOS開關(guān)管0導(dǎo)通時(shí)儲(chǔ)存能量,在開關(guān)管截止時(shí),電感L上感應(yīng)出右正左負(fù)的電壓,將導(dǎo)通時(shí)儲(chǔ)存的能量通過升壓二極管Dl對(duì)大的濾波電容充電,輸出能量,只不過其輸入的電壓是沒有經(jīng)過濾波的脈動(dòng)電壓。值得注意的是,平板電視大部分PFC電感L上大都并聯(lián)著一個(gè)二極管D2,該二極管D2具有保護(hù)作用。
大家知道:PFC電路后面大的儲(chǔ)能濾波電容C和PFC電感L是串聯(lián)的,由于電感L上的電流不能突變,就對(duì)大的濾波電容C的浪涌電流起了限制作用。
并聯(lián)保護(hù)分流二極管D2.由于沒有電感的限制作用,對(duì)濾波電容的沖擊反而會(huì)更大,但它可以保護(hù)升壓二圾管,特別是PFC開關(guān)管。D1是快速恢復(fù)二極管(由于開關(guān)管是在電感電流不為零的時(shí)候關(guān)斷的,需要承受更大的應(yīng)力,要求二極管有極低甚至為零的反向恢復(fù)電流),承受浪涌電流的能力較弱。減小反向恢復(fù)電流和提高浪涌電壓承載力是相互牽制的,而D2所采用的是普通的整流二極管,承受浪涌電流的能力很強(qiáng),如1N5407的額定電流3A.浪涌電流可達(dá)200A。
該保護(hù)二極管D2表面上降低的是對(duì)PFC電感和升壓二極管的浪涌沖擊,但實(shí)際上還有一個(gè)重要的作用:保護(hù)PFC開關(guān)管。
在開機(jī)的瞬間,濾波電容的電壓尚未建立,由于要對(duì)大電容充電.通過PFC電感的電流相對(duì)比較大。如果在電源開關(guān)接通的瞬間是在正弦波的最大值時(shí),對(duì)電容充電的過程中PFC電感L有可能會(huì)出現(xiàn)磁飽和的情況,此時(shí)PFC電路工作就麻煩了,在磁飽和的情況下,流過PFC開關(guān)管的電流就會(huì)失去限制,燒壞開關(guān)管。為防止悲劇發(fā)生,一種方法是對(duì)PFC電路工作的工作時(shí)序加以控制,即當(dāng)對(duì)大電容的充電完成以后,再啟動(dòng)PFC電路:另一種比較簡(jiǎn)單的辦法就是在PFC線圈到升壓二極管上并聯(lián)一只二極管旁路。啟動(dòng)的瞬間,給大電容的充電提供另一個(gè)支路,防止大電流流過PFC線圈造成飽和,過流損壞開關(guān)管,
保護(hù)開關(guān)管,同時(shí)該保護(hù)二極管D2也分流了升壓二極管D1上的電流,保護(hù)了升壓二極管。另外,D2的加入使得對(duì)大電容充電過程加快.其上的電壓及時(shí)建立,也能使PFC電路的電壓反饋環(huán)路及時(shí)工作,減小開機(jī)時(shí)PFC開關(guān)管的導(dǎo)通時(shí)間.使PFC電路盡快正常工作。‘所以,綜上所述,以上電路中二極管D2的作用是在開機(jī)瞬間或負(fù)載短路、PFC輸出電壓低于輸入電壓的非正常狀況下給電容提供充電路徑,防止PFC電感磁飽和對(duì)PFCMOS管造成的危險(xiǎn),同時(shí)也減輕了PFC電感和升壓二極管的負(fù)擔(dān),起到保護(hù)作用。在開機(jī)正常工作以后,由于D2右面為B+PFC輸出電壓,電壓比左面高,D2呈反偏截止?fàn)顟B(tài),對(duì)電路的工作沒有影響,D2可選用可承受較大浪涌電流的普通大電流的整流二極管。在有些電源中,PFC后面的電容容量不大,也有的沒有接入保護(hù)二極管D2,但如果PFC后面是使用大容量的濾波電容,此二極管是不能減少的,對(duì)電路的安全性有著重要的意義。
有源PFC在現(xiàn)代逆變電源中的應(yīng)用
帶有PFC功能的逆變器構(gòu)成方案
具有功率因數(shù)校正功能的逆變器構(gòu)成方案通常有三種:三級(jí)構(gòu)成方案Ⅰ、三級(jí)構(gòu)成方案Ⅱ和兩級(jí)構(gòu)成方案。
1.三級(jí)構(gòu)成方案Ⅰ
其結(jié)構(gòu)如圖3所示。第一級(jí)是50Hz工頻變壓器,用來實(shí)現(xiàn)電氣隔離功能,從而保證電源設(shè)備的安全性,免受來自高壓饋電線的危險(xiǎn)。第二級(jí)是功率因數(shù)校正電路,用來強(qiáng)迫線電流跟隨線電壓,使線電流正弦化,提高功率因數(shù),減少諧波含量,其輸出是400V左右的高壓直流。第三級(jí)是DC-AC模塊,用來實(shí)現(xiàn)逆變功能,即通過控制逆變電路的工作頻率和輸出時(shí)間比例,使逆變器的輸出電壓或電流的頻率和幅值按照人們的意愿或設(shè)備工作的要求來靈活地變化。
這是一種較早采用的方案,技術(shù)也比較成熟,其主要優(yōu)點(diǎn)是電路結(jié)構(gòu)簡(jiǎn)單,實(shí)現(xiàn)較為容易。主要缺點(diǎn)是電能經(jīng)過三級(jí)變換,降低了逆變器的可靠性和效率;工頻隔離變壓器體積龐大、笨重、耗費(fèi)材料多;PFC級(jí)的輸出,即DC-AC的輸入為400V左右的高壓直流電,這就對(duì)許多需要逆變級(jí)具有低壓輸入的應(yīng)用場(chǎng)合產(chǎn)生了限制。比如鐵路用逆變器和航空用逆變器等多個(gè)重要的逆變器應(yīng)用領(lǐng)域都需要110V的正弦交流電輸出,若采用這種構(gòu)成方案,則不僅可靠性難以得到保證,而且逆變器的效率會(huì)進(jìn)一步降低,一般不會(huì)超過80%。
2.三級(jí)構(gòu)成方案Ⅱ
其結(jié)構(gòu)如圖4所示。第一級(jí)是PFC級(jí),其結(jié)構(gòu)功能與三級(jí)構(gòu)成方案Ⅰ中的PFC電路相同。第二級(jí)是DC-DC級(jí),用來調(diào)節(jié)PFC輸出電壓和實(shí)現(xiàn)電氣隔離。第三級(jí)是DC-AC模塊,其結(jié)構(gòu)功能與三級(jí)構(gòu)成方案Ⅰ中的DC-AC電路相同。這是目前應(yīng)用較多的一種方案,是中大功率應(yīng)用的最佳選擇。
這種方案的主要優(yōu)點(diǎn)是去掉了笨重龐大的工頻變壓器;每一級(jí)均有各自的控制環(huán)節(jié),使得該電路具有良好的性能;DC-AC的輸入電壓可根據(jù)逆變輸出的不同要求進(jìn)行調(diào)整,適用于各種功率場(chǎng)合,效率較三級(jí)構(gòu)成方案Ⅰ有所提高。缺點(diǎn)是各級(jí)都需要一套獨(dú)立的控制電路,增加了器件數(shù)目和控制電路的復(fù)雜性;由于電能同樣經(jīng)過三級(jí)變換,使得逆變器的可靠性和效率仍然不能令人滿意。
3.兩級(jí)構(gòu)成方案
針對(duì)以上兩種方案的不足,人們提出了一種兩級(jí)構(gòu)成方案。該方案將三級(jí)構(gòu)成方案Ⅱ中的前兩級(jí)合并為一級(jí),使PFC和DC-DC級(jí)共用開關(guān)管和控制電路(如圖5所示),并通過高頻變壓器得到可調(diào)PFC輸出直流電壓,實(shí)現(xiàn)電氣隔離,如圖5所示。這種方案保持了三級(jí)構(gòu)成方案Ⅱ中的優(yōu)點(diǎn),而且改進(jìn)了三級(jí)構(gòu)成方案Ⅱ的不足之處。總之,可靠性高、效率高、成本低是這種逆變器構(gòu)成方案最顯著的優(yōu)點(diǎn)。
結(jié)論
將這三種逆變器的構(gòu)成方案進(jìn)行比較后不難發(fā)現(xiàn),它們的逆變部分結(jié)構(gòu)和功能完全相同,區(qū)別僅在于整流環(huán)節(jié),即通過不同方法產(chǎn)生經(jīng)隔離和功率因數(shù)校正后的(可調(diào))直流電壓,來作為逆變級(jí)的輸入。由于單級(jí)PFC電路將PFC級(jí)和DC-DC級(jí)結(jié)合在一起,能量只被處理一次,用一個(gè)控制器就能完成輸入PFC和輸出電壓調(diào)節(jié)功能,因此非常適用于逆變電源的前級(jí)整流環(huán)節(jié)。采用單級(jí)PFC電路的逆變器具有更高的可靠性,更高的效率和更低的成本。所以,帶單級(jí)PFC電路的兩級(jí)逆變技術(shù)成為電力電子領(lǐng)域研究的一個(gè)熱門課題。
盡管單級(jí)PFC電路具有上述優(yōu)點(diǎn),但是與傳統(tǒng)的兩級(jí)式PFC變換器相比,它要承受更高的電壓應(yīng)力,有更多的功率損耗。這些問題在開關(guān)頻率較高時(shí)顯得尤為突出,影響了變換器工作的可靠性和開關(guān)頻率的進(jìn)一步提高,也限制了其在大功率場(chǎng)合的應(yīng)用。為此,近些年又提出了各種軟開關(guān)技術(shù),如零電流開關(guān)(ZCS)、零電壓開關(guān)(ZVS)、零電壓轉(zhuǎn)換-脈寬調(diào)制(ZVT-PWM)、零電流轉(zhuǎn)換-脈寬調(diào)制(ZCT-PWM)等,有效地解決了這些問題,使得單級(jí)PFC電路在逆變電源系統(tǒng)中具有了更廣闊的應(yīng)用前景。
因此在現(xiàn)代逆變電源系統(tǒng)中,功率因數(shù)校正電路是一個(gè)不可或缺的重要組成部分。功率因數(shù)校正可以分為無源功率因數(shù)校正技術(shù)(Passive PFC)和有源功率因數(shù)校正技術(shù)(Active PFC)。無源功率因數(shù)校正技術(shù)是采用無源器件,如電感和電容組成得諧振濾波器來實(shí)現(xiàn)PFC功能;有源功率因數(shù)校正技術(shù)則采用了有源器件,如開關(guān)管和控制電路來實(shí)現(xiàn)PFC功能。現(xiàn)代逆變電源系統(tǒng)應(yīng)用的多為有源功率因數(shù)校正技術(shù),可以將輸入電流校正成與輸入電壓同相的正弦波,將功率因數(shù)提高至接近1。
推薦閱讀:
評(píng)論