內(nèi)容涵蓋神經(jīng)網(wǎng)絡(luò)定義、損失函數(shù)、前向傳播、反向傳播、梯度下降算法,對于想要了解深度學習運作原理的各位來說,內(nèi)容精彩不可錯過。
2018-05-30 08:54:56
10373 
基于神經(jīng)網(wǎng)絡(luò)中層信息量指標,分析不同神經(jīng)網(wǎng)絡(luò)模型的處理能力。我們分析比較了四種在 NLP 中常用的深度學習模型,即 BERT, Transformer, LSTM, 和 CNN。在各 NLP 任務(wù)中,BERT 模型往往表現(xiàn)最好,Transformer 模型次之。
2020-09-11 16:56:24
1160 
卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種特殊類型的神經(jīng)網(wǎng)絡(luò),在圖像上表現(xiàn)特別出色。卷積神經(jīng)網(wǎng)絡(luò)由Yan LeCun在1998年提出,可以識別給定輸入圖像中存在的數(shù)字。
2022-09-21 10:12:50
637 在兩層神經(jīng)網(wǎng)絡(luò)之間,必須有激活函數(shù)連接,從而加入非線性因素,提高神經(jīng)網(wǎng)絡(luò)的能力。所以,我們先從激活函數(shù)學起,一類是擠壓型的激活函數(shù),常用于簡單網(wǎng)絡(luò)的學習;另一類是半線性的激活函數(shù),常用于深度網(wǎng)絡(luò)的學習。
2023-08-07 10:02:29
441 
感知器是所有神經(jīng)網(wǎng)絡(luò)中最基本的,也是更復雜的神經(jīng)網(wǎng)絡(luò)的基本組成部分。它只連接一個輸入神經(jīng)元和一個輸出神經(jīng)元。
2023-08-31 16:55:50
671 
在如今的網(wǎng)絡(luò)時代,錯綜復雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學習逐漸走進人們的視線,通過深度學習解決若干問題的案例越來越多。一些傳統(tǒng)的圖像
2024-01-11 10:51:32
596 
多層感知機 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22
神經(jīng)網(wǎng)絡(luò)50例
2012-11-28 16:49:56
神經(jīng)網(wǎng)絡(luò)Matlab程序
2009-09-15 12:52:24
03_深度學習入門_神經(jīng)網(wǎng)絡(luò)和反向傳播算法
2019-09-12 07:08:05
神經(jīng)網(wǎng)絡(luò)在訓練時的優(yōu)化首先是對模型的當前狀態(tài)進行誤差估計,然后為了減少下一次評估的誤差,需要使用一個能夠表示錯誤函數(shù)對權(quán)重進行更新,這個函數(shù)被稱為損失函數(shù)。損失函數(shù)的選擇與神經(jīng)網(wǎng)絡(luò)模型從示例中學
2022-10-20 17:14:15
神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23
第1章 概述 1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展 1.2 生物神經(jīng)元 1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成 第2章人工神經(jīng)網(wǎng)絡(luò)基本模型 2.1 MP模型 2.2 感知器模型 2.3 自適應(yīng)線性
2012-03-20 11:32:43
將神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個項目需要用到網(wǎng)絡(luò)進行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機上做神經(jīng)網(wǎng)絡(luò)計算,這樣就可以實時計算,不依賴于上位機。所以要解決的主要是兩個
2022-01-11 06:20:53
神經(jīng)網(wǎng)絡(luò)簡介
2012-08-05 21:01:08
近年來,深度學習的繁榮,尤其是神經(jīng)網(wǎng)絡(luò)的發(fā)展,顛覆了傳統(tǒng)機器學習特征工程的時代,將人工智能的浪潮推到了歷史最高點。然而,盡管各種神經(jīng)網(wǎng)絡(luò)模型層出不窮,但往往模型性能越高,對超參數(shù)的要求也越來越嚴格
2019-09-11 11:52:14
基于深度學習的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05
解析深度學習:卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實踐
2020-06-14 22:21:12
MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13
MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)說明:本文檔中所列出的函數(shù)適用于MATLAB5.3以上版本,為了簡明起見,只列出了函數(shù)名,若需要進一步的說明,請參閱MATLAB的幫助文檔。1. 網(wǎng)絡(luò)創(chuàng)建函數(shù)newp
2009-09-22 16:10:08
請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)故障診斷,在NI官網(wǎng)找到了機器學習工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個范例有很多不懂的地方,比如
2017-02-22 16:08:08
習神經(jīng)神經(jīng)網(wǎng)絡(luò),對于神經(jīng)網(wǎng)絡(luò)的實現(xiàn)是如何一直沒有具體實現(xiàn)一下:現(xiàn)看到一個簡單的神經(jīng)網(wǎng)絡(luò)模型用于訓練的輸入數(shù)據(jù):對應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點個數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點
2021-08-18 07:25:21
學習和認知科學領(lǐng)域,是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學模型或計算模型,用于對函數(shù)進行估計或近似。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進行計算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)
2019-03-03 22:10:19
電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個主題為一期,希望對各位有所幫助!(點擊標題即可進入頁面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學習方法與應(yīng)用實例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門資料MATLAB神經(jīng)網(wǎng)絡(luò)30個案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計》深度學習和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14
是一種常用的無監(jiān)督學習策略,在使用改策略時,網(wǎng)絡(luò)的輸出神經(jīng)元相互競爭,每一時刻只有一個競爭獲勝的神經(jīng)元激活。ART神經(jīng)網(wǎng)絡(luò)由比較層、識別層、識別閾值、重置模塊構(gòu)成。其中比較層負責接收輸入樣本,并將其傳遞
2019-07-21 04:30:00
`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含一個隱層的BP神經(jīng)網(wǎng)絡(luò)模型(兩層神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò):神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00
人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認識過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對如何由輸入得到輸出的機理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復雜的實際問題。那有哪些辦法能實現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
人工神經(jīng)網(wǎng)絡(luò)課件
2016-06-19 10:15:48
,如何用一個神經(jīng)網(wǎng)絡(luò),寫出一套機器學習算法,來自動識別未知的圖像。一個 4 層的神經(jīng)網(wǎng)絡(luò)輸入層經(jīng)過幾層算法得到輸出層 實現(xiàn)機器學習的方法有很多,近年被人們討論得多的方法就是深度學習。 深度學習是一種實現(xiàn)
2018-05-11 11:43:14
簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
圖卷積神經(jīng)網(wǎng)絡(luò)
2019-08-20 12:05:29
transform net)和預訓練好的損失計算網(wǎng)絡(luò)VGG-16,圖像轉(zhuǎn)換網(wǎng)絡(luò)T以內(nèi)容圖像x為輸入,輸出風格遷移后的圖像y,隨后內(nèi)容圖像yc,風格圖像ys,以及y’輸入vgg-16計算特征。在此次深度神經(jīng)網(wǎng)絡(luò)
2018-05-08 15:57:47
本文使用keras搭建神經(jīng)網(wǎng)絡(luò),實現(xiàn)基于深度學習算法的股票價格預測。本文使用的數(shù)據(jù)來源為tushare,一個免費開源接口;且只取開票價進行預測。import numpy as npimport
2022-02-08 06:40:03
全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42
【深度學習】卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37
《深度學習工程師-吳恩達》03卷積神經(jīng)網(wǎng)絡(luò)—深度卷積網(wǎng)絡(luò):實例探究 學習總結(jié)
2020-05-22 17:15:57
卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10
卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50
卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用轉(zhuǎn)載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學習是機器學習和人工智能研究的最新趨勢,作為一個
2022-08-02 10:39:39
卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44
列文章將只關(guān)注卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN的主要應(yīng)用領(lǐng)域是輸入數(shù)據(jù)中包含的對象的模式識別和分類。CNN是一種用于深度學習的人工神經(jīng)網(wǎng)絡(luò)。此類網(wǎng)絡(luò)由一個輸入層、多個卷積層和一個輸出層組成。卷積層是最重
2023-02-23 20:11:10
什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22
【新技術(shù)發(fā)布】基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達物體識別系統(tǒng)及其嵌入式平臺部署激光雷達可以準確地完成三維空間的測量,具有抗干擾能力強、信息豐富等優(yōu)點,但受限于數(shù)據(jù)量大、不規(guī)則等難點,基于深度神經(jīng)網(wǎng)絡(luò)
2021-12-21 07:59:18
基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達物體識別系統(tǒng)及其嵌入式平臺部署
2021-01-04 06:26:23
最近在學習電機的智能控制,上周學習了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達能力,可以通過對系統(tǒng)性能的學習來實現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47
基于BP神經(jīng)網(wǎng)絡(luò)的辨識
2018-01-04 13:37:27
FPGA實現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性
2021-04-30 06:58:13
基于RBF神經(jīng)網(wǎng)絡(luò)的辨識
2018-01-04 13:38:52
基于光學芯片的神經(jīng)網(wǎng)絡(luò)訓練解析,不看肯定后悔
2021-06-21 06:33:55
FPGA 上實現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識別任務(wù)以及與機器學習類似的其他問題方面已大獲成功。在當前案例中,針對在 FPGA 上實現(xiàn) CNN 做一個可行性研究
2019-06-19 07:24:41
如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預測的計算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預測
2021-07-12 08:02:11
神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡稱,是當前的研究熱點之一。人腦在接受視覺感官傳來的大量圖像信息后,能迅速做出反應(yīng)
2019-08-08 06:11:30
有提供編寫神經(jīng)網(wǎng)絡(luò)預測程序服務(wù)的嗎?
2011-12-10 13:50:46
求助地震波神經(jīng)網(wǎng)絡(luò)程序,共同交流!!
2013-05-11 08:14:19
小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請問這個控制方法可以嗎?有誰會神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16
求助大神 小的現(xiàn)在有個難題: 一組車重實時數(shù)據(jù) 對應(yīng)一個車重的最終數(shù)值(一個一維數(shù)組輸入對應(yīng)輸出一個數(shù)值) 這其中可能經(jīng)過均值、方差、去掉N個最大值、、、等等的計算 我的目的就是弄清楚這個中間計算過程 最近實在想不出什么好辦法就打算試試神經(jīng)網(wǎng)絡(luò) 請教大神用什么神經(jīng)網(wǎng)絡(luò)好求神經(jīng)網(wǎng)絡(luò)程序
2016-07-14 13:35:44
2018年全球第三大風力發(fā)電機制造商論文下載地址:https://arxiv.org/pdf/1902.05625v1.pdf論文代碼地址:https://github.com/BinhangYuan/WaveletFCNN需要簡單儲備的知識離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡(luò)回顧離散小波變
2021-07-12 07:38:36
最簡單的神經(jīng)網(wǎng)絡(luò)
2019-09-11 11:57:36
CV之YOLOv3:深度學習之計算機視覺神經(jīng)網(wǎng)絡(luò)Yolov3-5clessses訓練自己的數(shù)據(jù)集全程記錄(第二次)——Jason niu
2018-12-24 11:52:25
原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類、物體檢測等機器
2021-12-14 07:35:25
關(guān)于遺傳算法和神經(jīng)網(wǎng)絡(luò)的
2013-05-19 10:22:16
`將非局部計算作為獲取長時記憶的通用模塊,提高神經(jīng)網(wǎng)絡(luò)性能在深度神經(jīng)網(wǎng)絡(luò)中,獲取長時記憶(long-range dependency)至關(guān)重要。對于序列數(shù)據(jù)(例如語音、語言),遞歸運算
2018-11-12 14:52:50
提出一種前饋神經(jīng)網(wǎng)絡(luò)盲多用戶檢測算法,利用前饋神經(jīng)網(wǎng)絡(luò)替代原有檢測器中的濾波器,通過懲罰函數(shù)對約束恒模代價函數(shù)進行求解,獲得前饋神經(jīng)網(wǎng)絡(luò)權(quán)值和參數(shù)的迭代公式,
2009-04-22 08:41:47
29 《神經(jīng)網(wǎng)絡(luò)與深度學習》講義
2017-07-20 08:58:24
0 人工神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的機器學習模型,隨著深度學習的發(fā)展神經(jīng)網(wǎng)絡(luò)模型日益完善。聯(lián)想大家熟悉的回歸問題, 神經(jīng)網(wǎng)絡(luò)模型實際上是根據(jù)訓練樣本創(chuàng)造出一個多維輸入多維輸出的函數(shù), 并使用該函數(shù)進行預測
2017-11-16 12:26:52
6900 
對于許多機器學習算法來說,最終要解決的問題往往是最小化一個函數(shù),我們通常稱這個函數(shù)叫損失函數(shù)。在神經(jīng)網(wǎng)絡(luò)里面同樣如此,損失函數(shù)層(CostLayer)和 Optimizers 因而應(yīng)運而生(……)。
2017-11-30 16:09:10
8083 如何利用深度神經(jīng)網(wǎng)絡(luò)給圖片自動上色,本文介紹了開源神經(jīng)網(wǎng)絡(luò)圖片上色技術(shù),解析深度學習會自動上色的核心技術(shù),并且?guī)酌腌娋蛯崿F(xiàn)PS幾個月的效果
2018-01-10 13:21:52
11397 Statsbot深度學習開發(fā)者Jay Shah帶你入門神經(jīng)網(wǎng)絡(luò),一起了解自動編碼器、卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)等流行的神經(jīng)網(wǎng)絡(luò)類型及其應(yīng)用。
2018-01-15 17:11:38
8954 由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會覺得兩者沒有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01
557 解。這是對深度學習的復古?到底是否有效?社區(qū)中很多人對此發(fā)表了看法。機器之心簡要介紹了該論文,更詳細的推導過程與方法請查看原論文,不過這樣的證明讀者們都 Hold 住嗎。 用一階方法訓練的神經(jīng)網(wǎng)絡(luò)已經(jīng)對很多應(yīng)用產(chǎn)生了顯著影響,但
2018-10-18 20:46:01
435 本文檔的詳細介紹的是快速了解神經(jīng)網(wǎng)絡(luò)與深度學習的教程資料免費下載主要內(nèi)容包括了:機器學習概述,線性模型,前饋神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò),循環(huán)神經(jīng)網(wǎng)絡(luò),網(wǎng)絡(luò)優(yōu)化與正則化,記憶與注意力機制,無監(jiān)督學習,概率圖模型,玻爾茲曼機,深度信念網(wǎng)絡(luò),深度生成模型,深度強化學習
2019-02-11 08:00:00
25 什么是神經(jīng)網(wǎng)絡(luò)激活函數(shù)?激活函數(shù)有助于決定我們是否需要激活神經(jīng)元。如果我們需要發(fā)射一個神經(jīng)元那么信號的強度是多少。激活函數(shù)是神經(jīng)元通過神經(jīng)網(wǎng)絡(luò)處理和傳遞信息的機制
2020-07-05 11:21:21
3352 
隨著深度學習技術(shù)的快速發(fā)展,許多研究者嘗試利用深度學習來解決文本分類問題,特別是在卷積神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)方面,出現(xiàn)了許多新穎且有效的分類方法。對基于深度神經(jīng)網(wǎng)絡(luò)的文本分類問題進行分析,介紹
2021-03-10 16:56:56
36 為解決采用卷積神經(jīng)網(wǎng)絡(luò)對商家招牌進行分類時存在特征判別性較差的問題,通過在注意力機制中引入神經(jīng)網(wǎng)絡(luò),提岀一種端到端的深度學習卷積神經(jīng)網(wǎng)絡(luò)方法。使用卷積注意力模塊分別學習通道注意力與空間注意力信息
2021-03-12 10:51:45
8 基于卷積神經(jīng)網(wǎng)絡(luò)的遠程監(jiān)督關(guān)系抽取方法提取的特征單一,且標準交叉熵損失函數(shù)未能較好處理數(shù)據(jù)集中正負樣本比例不均衡的情況。為此,提出一種基于深度殘差神經(jīng)網(wǎng)絡(luò)的遠程監(jiān)督關(guān)系抽取模型,通過改進交叉熵聚焦
2021-05-24 17:06:08
3 深度學習是機器學習的一個子集,它使用神經(jīng)網(wǎng)絡(luò)來執(zhí)行學習和預測。深度學習在各種任務(wù)中都表現(xiàn)出了驚人的表現(xiàn),無論是文本、時間序列還是計算機視覺。
2022-04-07 10:17:05
1380 本章將介紹用于解決實際問題的深度學習架構(gòu)的不同模塊。前一章使用PyTorch的低級操作構(gòu)建了如網(wǎng)絡(luò)架構(gòu)、損失函數(shù)和優(yōu)化器這些模塊。本章將介紹用于解決真實問題的神經(jīng)網(wǎng)絡(luò)的一些重要組件,以及
2022-07-08 10:22:08
544 
神經(jīng)網(wǎng)絡(luò)從感知機發(fā)展到多層前饋神經(jīng)網(wǎng)絡(luò),網(wǎng)絡(luò)變得越來越復雜。如上一篇 機器學習中的函數(shù)(2)- 多層前饋網(wǎng)絡(luò)巧解“異或”問題,損失函數(shù)上場優(yōu)化網(wǎng)絡(luò)性能 討論針對前饋神經(jīng)網(wǎng)絡(luò)我們的目標是要讓損失函數(shù)
2022-11-01 11:54:29
2551 在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識。就目前而言,神經(jīng)網(wǎng)絡(luò)是深度學習算法的核心,我們所熟知的很多深度學習算法的背后其實都是神經(jīng)網(wǎng)絡(luò)。
2023-02-23 09:14:44
2256 本項目在之前項目分類模型基礎(chǔ)上神經(jīng)網(wǎng)絡(luò)應(yīng)用(一)進一步拓展神經(jīng)網(wǎng)絡(luò)應(yīng)用,相比之前本項目增加了新的知識點,比如正則化,softmax函數(shù)和交叉熵損失函數(shù)等。
2023-02-24 15:43:47
1286 
來源:青榴實驗室 1、引子 深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語音識別等復雜機器學習任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。 在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識和三個最流行神經(jīng)網(wǎng)絡(luò):多層
2023-05-15 14:20:01
550 
在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識和三個最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)(MLP),卷積神經(jīng)網(wǎng)絡(luò)(CNN)和遞歸神經(jīng)網(wǎng)絡(luò)(RNN)。
2023-05-15 14:19:18
1096 
被稱為損失函數(shù)。損失函數(shù)的選擇與神經(jīng)網(wǎng)絡(luò)模型從示例中學習的特定預測建模問題(例如分類或回歸)有關(guān)。在本文中我們將介紹常用的一些損失函數(shù),包括:回歸模型的均方誤差損失
2022-10-19 11:17:35
477 
來源:青榴實驗室1、引子深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語音識別等復雜機器學習任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識和三個最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)
2023-05-17 09:59:19
946 
卷積神經(jīng)網(wǎng)絡(luò)通俗理解 卷積神經(jīng)網(wǎng)絡(luò),英文名為Convolutional Neural Network,成為了當前深度學習領(lǐng)域最重要的算法之一,也是很多圖像和語音領(lǐng)域任務(wù)中最常用的深度學習模型之一
2023-08-17 16:30:25
2062 卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學習的人工神經(jīng)網(wǎng)絡(luò),是深度學習技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30
806 卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)通常用來處理什么 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種在神經(jīng)網(wǎng)絡(luò)領(lǐng)域內(nèi)廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型。相較于傳統(tǒng)
2023-08-21 16:41:45
3487 深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機器學習算法,其主要特點是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動調(diào)整神經(jīng)元之間的權(quán)重,從而實現(xiàn)對大規(guī)模數(shù)據(jù)進行預測和分類。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:36
1869 神經(jīng)網(wǎng)絡(luò)模型是一種通過模擬生物神經(jīng)元間相互作用的方式實現(xiàn)信息處理和學習的計算機模型。它能夠?qū)斎霐?shù)據(jù)進行分類、回歸、預測和聚類等任務(wù),已經(jīng)廣泛應(yīng)用于計算機視覺、自然語言處理、語音處理等領(lǐng)域。下面將就神經(jīng)網(wǎng)絡(luò)模型的概念和工作原理,構(gòu)建神經(jīng)網(wǎng)絡(luò)模型的常用方法以及神經(jīng)網(wǎng)絡(luò)模型算法介紹進行詳細探討。
2023-08-28 18:25:27
582 深度神經(jīng)網(wǎng)絡(luò)是深度學習的一種框架,它是一種具備至少一個隱層的神經(jīng)網(wǎng)絡(luò)。與淺層神經(jīng)網(wǎng)絡(luò)類似
2023-10-11 09:14:33
363 
評論