在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

挑戰(zhàn)摩爾定律極限 可考慮不同半導(dǎo)體架構(gòu)

kus1_iawbs2016 ? 來源:fqj ? 2019-05-23 16:56 ? 次閱讀

4月登場的「超大型積體電路國際研討會」(VLSI-TSA/DAT)是全球半導(dǎo)體產(chǎn)業(yè)年度盛事,首場專題演講邀請到美國IBM華生研究中心研究員沙希迪(Ghavam Shahidi)以「功耗改善減緩,摩爾定律是否已走到盡頭?」為題,談半導(dǎo)體最新制程面臨功率改善放緩的問題,并提出建議的解決之道。

1965年提出的摩爾定律(Moore's Law)引領(lǐng)半導(dǎo)體發(fā)展超過半世紀,是指芯片上可容納的電晶體數(shù)目,約每隔18個月便會增加一倍,性能也將提升一倍,但近年的互補式金屬氧化物半導(dǎo)體(CMOS)先進制程中,最新幾代納米節(jié)點的功耗改善程度,已出現(xiàn)明顯的放緩,這不禁讓人憂心,摩爾定律是否即將走到盡頭?

制程推進唯功耗降低才能提高效能

半導(dǎo)體的主流制程CMOS,多年來每推進到一個新的納米節(jié)點,最大的兩個效益就是:面積可縮小30%、功耗明顯改善。以后者來看,在特定頻率下,芯片功耗的降低(每次操作的耗能)是一項重要指標,因為惟有芯片的整體耗能改善,才有機會提升芯片性能,例如:可在芯片的下一代設(shè)計中,內(nèi)建更多核心或新增更多功能。

綜觀半導(dǎo)體納米節(jié)點的歷史數(shù)據(jù),早期每一代的納米制程進化,其功耗與上一代相較,改善的幅度都很大。以Sony游戲主機Playsation 2所采用的250納米芯片為例,整體芯片的耗能為23瓦,演進了3個世代后,來到90納米節(jié)點,功耗僅須0.5瓦,等于每一個納米世代較前一代平均節(jié)能72%以上。

14納米制程節(jié)能幅度大不如前

然而,在近年幾個制程中,節(jié)能幅度大不如前。以英特爾的Core i7做為測試標的,第一代Core i7采45納米制程,第二代Core i7采32納米制程,兩代之間僅實現(xiàn)了32%到50%的能耗下降。

接下來Core i7在2012年進入了22納米制程,能耗只比32納米下降了20%至27%。2014年,英特爾又陸續(xù)發(fā)表采用14納米的Broadwell及Skylake(分別是第五、第六代的Core i7),結(jié)果它與前一代的22納米相較,功耗僅下降0%至25% ,節(jié)能幅度創(chuàng)下最低紀錄。直到2017年推出采14++納米制程的Core i7芯片,節(jié)能幅度才增至20%到33%。

觀察Core i7從45納米到14納米的節(jié)能數(shù)據(jù)可以看出,雖然每一代制程,芯片的面積愈縮愈小,但能夠達到的能耗縮減幅度卻愈來愈小,尤其在14納米初期最為明顯。近2年進入更先進的10納米制程,也有類似狀況,例如英特爾在2018年5月推出第一個采用10納米制程的Core i3,其功耗表現(xiàn)跟14納米制程類似:亦即并未看到功耗大幅降低。

挑戰(zhàn)極限可考慮不同半導(dǎo)體架構(gòu)

這個是否代表摩爾定律已逼近極限?如果芯片在每個新世代的制程無法達到明顯的功耗下降,確實會導(dǎo)致芯片效能出現(xiàn)瓶頸,因為芯片能否置入更多核心,能否新增更多功能,都與能耗息息相關(guān)。

展望未來,若要改善功耗,關(guān)鍵之一在于必須將半導(dǎo)體元件的電容降低。我認為,不論是業(yè)界目前初邁入的7納米,甚或是未來更先進的納米制程,也要準備好3種不同架構(gòu)的選項來改善功耗:一是繼續(xù)采行鰭式場效電晶體(FinFET)架構(gòu),設(shè)法將FET的閘極高度降低。
FinFET架構(gòu)雖蔚為主流,卻因閘極底部不導(dǎo)電及閘極過高,造成寄生電容產(chǎn)生,若能解決此一問題,應(yīng)可見到功耗的改善。二是轉(zhuǎn)向納米線(Nano-wires)或垂直式FET(Vertical FET)等3D架構(gòu),以降低寄生電容和電阻;三是將平面式(Planar)架構(gòu)納入考量,例如SOI(絕緣層上硅晶體)的原理是在硅晶體之間,加入絕緣體物質(zhì),可使寄生電容減少。

我想大家都很期待,在未來幾個更先進的納米制程,能回復(fù)到早期納米節(jié)點功耗大幅降低的景況,這對下世代高效能微處理器來說尤其重要。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 英特爾
    +關(guān)注

    關(guān)注

    61

    文章

    10009

    瀏覽量

    172344
  • 半導(dǎo)體
    +關(guān)注

    關(guān)注

    334

    文章

    27719

    瀏覽量

    222699

原文標題:挑戰(zhàn)摩爾定律極限,可考慮不同半導(dǎo)體架構(gòu)

文章出處:【微信號:iawbs2016,微信公眾號:寬禁帶半導(dǎo)體技術(shù)創(chuàng)新聯(lián)盟】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    擊碎摩爾定律!英偉達和AMD將一年一款新品,均提及HBM和先進封裝

    增加一倍,性能也將提升一倍。過去很長一段時間,摩爾定律被認為是全球半導(dǎo)體產(chǎn)業(yè)進步的基石。如今,這一定律已經(jīng)逐漸失效,延續(xù)摩爾和超越摩爾路線紛
    的頭像 發(fā)表于 06-04 00:06 ?4153次閱讀
    擊碎<b class='flag-5'>摩爾定律</b>!英偉達和AMD將一年一款新品,均提及HBM和先進封裝

    石墨烯互連技術(shù):延續(xù)摩爾定律的新希望

    半導(dǎo)體行業(yè)長期秉持的摩爾定律(該定律規(guī)定芯片上的晶體管密度大約每兩年應(yīng)翻一番)越來越難以維持。縮小晶體管及其間互連的能力正遭遇一些基本的物理限制。特別是,當銅互連按比例縮小時,其電阻率急劇上升,這會
    的頭像 發(fā)表于 01-09 11:34 ?221次閱讀

    摩爾定律是什么 影響了我們哪些方面

    摩爾定律是由英特爾公司創(chuàng)始人戈登·摩爾提出的,它揭示了集成電路上可容納的晶體管數(shù)量大約每18-24個月增加一倍的趨勢。該定律不僅推動了計算機硬件的快速發(fā)展,也對多個領(lǐng)域產(chǎn)生了深遠影響。
    的頭像 發(fā)表于 01-07 18:31 ?308次閱讀

    Chiplet或改變半導(dǎo)體設(shè)計和制造

    在快速發(fā)展的半導(dǎo)體領(lǐng)域,小芯片技術(shù)正在成為一種開創(chuàng)性的方法,解決傳統(tǒng)單片系統(tǒng)級芯片(SoC)設(shè)計面臨的許多挑戰(zhàn)。隨著摩爾定律的放緩,半導(dǎo)體行業(yè)正在尋求創(chuàng)新的解決方案,以提高性能和功能,
    的頭像 發(fā)表于 12-05 10:03 ?299次閱讀
    Chiplet或改變<b class='flag-5'>半導(dǎo)體</b>設(shè)計和制造

    摩爾定律時代,提升集成芯片系統(tǒng)化能力的有效途徑有哪些?

    電子發(fā)燒友網(wǎng)報道(文/吳子鵬)當前,終端市場需求呈現(xiàn)多元化、智能化的發(fā)展趨勢,芯片制造則已經(jīng)進入后摩爾定律時代,這就導(dǎo)致先進的工藝制程雖仍然是芯片性能提升的重要手段,但效果已經(jīng)不如從前,先進封裝
    的頭像 發(fā)表于 12-03 00:13 ?2496次閱讀

    Chiplet將徹底改變半導(dǎo)體設(shè)計和制造

    的方法,解決傳統(tǒng)單片系統(tǒng)級芯片(SoC)設(shè)計面臨的許多挑戰(zhàn)。隨著摩爾定律的放緩,半導(dǎo)體行業(yè)正在尋求創(chuàng)新的解決方案,以提高性能和功能,而不只是增加晶體管密度。小芯片提供了有前途的前進道路,在芯片設(shè)計和制造中提供了靈活性、模塊化、可
    的頭像 發(fā)表于 11-25 09:50 ?222次閱讀
    Chiplet將徹底改變<b class='flag-5'>半導(dǎo)體</b>設(shè)計和制造

    晶圓廠與封測廠攜手,共筑先進封裝新未來

    隨著半導(dǎo)體技術(shù)的飛速發(fā)展,摩爾定律逐漸逼近物理極限,傳統(tǒng)依靠縮小晶體管尺寸來提升性能的方法面臨嚴峻挑戰(zhàn)。在此背景下,先進封裝技術(shù)作為超越摩爾定律
    的頭像 發(fā)表于 09-24 10:48 ?700次閱讀
    晶圓廠與封測廠攜手,共筑先進封裝新未來

    國產(chǎn)半導(dǎo)體新希望:Chiplet技術(shù)助力“彎道超車”!

    半導(dǎo)體行業(yè),技術(shù)的每一次革新都意味著競爭格局的重新洗牌。隨著摩爾定律逐漸逼近物理極限,傳統(tǒng)芯片制造工藝面臨著前所未有的挑戰(zhàn)。在這一背景下,Chiplet(小芯片或芯粒)技術(shù)應(yīng)運而生,
    的頭像 發(fā)表于 08-28 10:59 ?914次閱讀
    國產(chǎn)<b class='flag-5'>半導(dǎo)體</b>新希望:Chiplet技術(shù)助力“彎道超車”!

    “自我實現(xiàn)的預(yù)言”摩爾定律,如何繼續(xù)引領(lǐng)創(chuàng)新

    未來的自己制定了一個遠大但切實可行的目標一樣, 摩爾定律半導(dǎo)體行業(yè)的自我實現(xiàn) 。雖然被譽為技術(shù)創(chuàng)新的“黃金法則”,但一些事情尚未廣為人知……. 1.?戈登·摩爾完善過摩爾定律的定義
    的頭像 發(fā)表于 07-05 15:02 ?329次閱讀

    探索熱阻測試儀在半導(dǎo)體器件熱管理中的應(yīng)用與前景

    器件生產(chǎn)行業(yè)及使用單位至關(guān)重要。 自1947年第一支雙極性晶體管誕生以來,半導(dǎo)體行業(yè)的迅速發(fā)展改變了社會面貌并影響著人們的生活。從1965年摩爾定律的提出開始,半導(dǎo)體技術(shù)按摩爾定律不斷
    的頭像 發(fā)表于 05-16 08:57 ?563次閱讀

    封裝技術(shù)會成為摩爾定律的未來嗎?

    你可聽說過摩爾定律?在半導(dǎo)體這一領(lǐng)域,摩爾定律幾乎成了預(yù)測未來的神話。這條定律,最早是由英特爾聯(lián)合創(chuàng)始人戈登·摩爾于1965年提出,簡單地說
    的頭像 發(fā)表于 04-19 13:55 ?409次閱讀
    封裝技術(shù)會成為<b class='flag-5'>摩爾定律</b>的未來嗎?

    半導(dǎo)體發(fā)展的四個時代

    臺積電的 Suk Lee 發(fā)表了題為“摩爾定律半導(dǎo)體行業(yè)的第四個時代”的主題演講。Suk Lee表示,任何試圖從半導(dǎo)體行業(yè)傳奇而動蕩的歷史中發(fā)掘出一些意義的事情都會引起我的注意。正如臺積電所解釋
    發(fā)表于 03-27 16:17

    半導(dǎo)體發(fā)展的四個時代

    臺積電的 Suk Lee 發(fā)表了題為“摩爾定律半導(dǎo)體行業(yè)的第四個時代”的主題演講。Suk Lee表示,任何試圖從半導(dǎo)體行業(yè)傳奇而動蕩的歷史中發(fā)掘出一些意義的事情都會引起我的注意。正如臺積電所解釋
    發(fā)表于 03-13 16:52

    AI在半導(dǎo)體設(shè)計和制造中的作用

    半導(dǎo)體產(chǎn)業(yè)正在經(jīng)歷一場由數(shù)字化轉(zhuǎn)型引領(lǐng)的結(jié)構(gòu)性變革,人工智能(AI)技術(shù)融入產(chǎn)品研發(fā)過程進一步加速了這一轉(zhuǎn)型。與此同時,摩爾定律從晶體管微縮向系統(tǒng)級微縮的演進以及新冠疫情引發(fā)的全球電子供應(yīng)鏈重塑,也為半導(dǎo)體產(chǎn)業(yè)轉(zhuǎn)型提供了新的機遇
    的頭像 發(fā)表于 02-23 09:59 ?1125次閱讀

    功能密度定律是否能替代摩爾定律摩爾定律和功能密度定律比較

    眾所周知,隨著IC工藝的特征尺寸向5nm、3nm邁進,摩爾定律已經(jīng)要走到盡頭了,那么,有什么定律能接替摩爾定律呢?
    的頭像 發(fā)表于 02-21 09:46 ?833次閱讀
    功能密度<b class='flag-5'>定律</b>是否能替代<b class='flag-5'>摩爾定律</b>?<b class='flag-5'>摩爾定律</b>和功能密度<b class='flag-5'>定律</b>比較
    主站蜘蛛池模板: 一级aaaaaa片毛片在线播放 | 高清一级毛片一本到免费观看 | 亚洲综合五月天 | 国内一区二区三区精品视频 | 午夜免费观看福利片一区二区三区 | 欧美卡一卡二卡新区网站 | 久久成人国产精品免费 | 成人性生活免费视频 | 国产一区国产二区国产三区 | 在线视频网址免费播放 | 色天天综合色天天碰 | 日本免费一级 | 欧美成人eee在线 | 九九热re | 黄色美女网站在线观看 | 亚洲人成电影在在线观看网色 | 理论在线视频 | 美女和帅哥在床上玩的不可描述 | 奇米影视777欧美在线观看 | 成人综合在线观看 | 免费福利在线播放 | 一区二区三区四区视频 | 久久伊人网站 | 一级毛片视频在线 | 免费又黄又硬又大爽日本 | 亚洲天堂999 | 99热最新网址 | 国产精品视频永久免费播放 | 激情文学综合网 | 在线播放视频网站 | 成人午夜在线观看国产 | 真实女人寂寞偷人视频 | 欧美性黑人极品1819hd | 色五五月| 一级片免费看 | 在线视频 一区二区 | 精品三级内地国产在线观看 | 高清成人| 亚洲综合激情另类专区 | 日本不卡免费新一区二区三区 | 国产精品成人一区二区三区 |