以及良好的界面接觸,但其不能安全地用于金屬鋰體系、鋰離子遷移數低、易泄漏、易揮發、易燃、安全性差等問題阻礙了鋰電池的進一步發展。 而與液態電解質以及無機固態電解質相比,全固態聚合物電解質具有良好的安全性能、
2020-06-05 16:50:53
6362 澳大利亞迪肯大學(Deakin University)的研究人員表示,他們已經設法使用常見的工業聚合物來制造固體電解質,從而為固態鋰電池能量密度翻倍打開了大門,這種固態鋰電池在過熱時不會爆炸或著火。
2019-11-28 09:55:04
3749 關于固態電池的技術問題,現在主要就是在固態電解質,不用液態電解質固然降低電池重量和體積,可是固態材料的接觸面積遠不如前者,離子流動性也要遜色不少,困擾著很多相關的技術人員。
2019-12-30 17:06:32
3720 和一般燃料電池一樣,SOFC也是把反應物的化學能直接轉化為電能的電化學裝置,只不過工作溫度較高,一般在800—1000℃。它也是由陽極、陰極及兩極之間的電解質組成。
2020-01-20 16:09:00
12822 
安全問題一直以來都是阻礙鋰電池的工業使用的障礙,因為鋰電的高度易燃液體有機電解質容易泄漏,而且還依賴于熱和機械不穩定的電極分離器。雖然固態電解質已經顯示出改善鋰電池安全性能的潛力,但它們的電極/電解質經常接觸不良而且離子電導率有限,導致了固態鋰電的性能低下。
2020-03-13 14:51:32
4024 比起易燃的有機電解液,固態無機電解質本身不易燃;而且,用鋰金屬代替石墨作為負極,可使電池的能量密度大幅提升(高達10倍)。因此,固態電池有望成為電動汽車的突破性技術。
2020-03-23 16:40:10
2142 據外媒報道,當今的鋰電池由陰極,陽極和液體電解質組成,該液體電解質在充電和放電時在鋰離子之間來回傳遞。最近,科學家一直在研究電解質的更多固態形式可能帶來什么,特別是在安全性方面。
2020-04-02 14:34:23
4476 電解質和電解液不是一樣的,電解液包含電解質,因為電解質是固態,一般是指離子狀態的物質,電解液溶解在液態溶劑中形成了電解液,是指能導電的一種液體,會因為使用環境不同、物質配方會不同,但是功能是一樣的,就是具有導電的功能。
2020-04-16 09:40:10
24548 據外媒報道,韓國科學技術研究院能源材料中心的Hyoungchul Kim博士研究團隊成功研發了一款基于硫化物的超離子導體,可作為一種高性能固態電解質,用于全固態電池。
2020-05-20 09:05:17
1263 目前全球布局固態電池的公司和機構超過46家,國內外企業和資金主要圍繞三個路徑進行布局,分別是:聚合物電解質和無機電解質的氧化物、硫化物,三者分別代表了這一技術的過去、現在和未來。
2020-05-20 10:47:14
4854 
不過,需要指出的是,形成
固態電解質的途徑有很多種,但并非所有的
固態電解質都不易燃燒。李泓就明確表示,“ 我們最近發表了一些文章,論證了
氧化物固態電解質(
固態電池的一種)優良的熱穩定性,但是否每一種
固態電解質都意味著熱穩定,還有待具體的研究數據?!?/div>
2020-08-14 10:53:42
1188 按照電解質材料的選擇,固態電池可以分為聚合物、氧化物、硫化物三種體系電解質。其中,聚合物電解質屬于有機電解質,氧化物與硫化物屬于無機陶瓷電解質。
2020-11-24 15:02:12
1942 固態鋰電池與傳統鋰離子電池不同在于以固態電解質替代了傳統鋰離子電池的電解液和隔膜。目前已經在使用或者接近商用的固態鋰電池的電解質有三種:聚合物、硫化物和氧化物。
2020-12-28 09:35:42
4337 ? ? ? 由于能量密度和安全等方面的優勢,全固態電池被看作是未來可再充電池技術的核心。作為固態電池核心技術,以聚合物、氧化物、硫化物三大類復合材料為主的固態電解質受到廣泛關注,成為各大科研院所
2020-12-30 10:32:09
3043 1月20日消息,企查查APP顯示,寧德時代公開“一種固態電解質的制備方法”“一種硫化物固態電解質片及其制備方法”兩種固態電池相關專利。其中第一條公開號為CN112242556A。 專利摘要顯示,本
2021-01-20 17:23:55
3542 
早期固態電池的電解質是聚合物電解質,以PEO(聚環氧乙烷)占絕大多數,PEO的電化學穩定窗口(氧化電位)是3.8V,無法與高電壓正極材料(鈷酸鋰、三元材料等)相容,只能用磷酸鐵鋰做正極,所以不用鈷的說法就流傳下來。
2021-03-17 20:40:04
8 近年來,許多研究團隊都在努力為鋰電池尋找性能更加優異的固態電解質和電極材料。
2021-03-18 13:49:44
2431 ? 研究表明,相比傳統的鋰離子電池,使用鋰金屬作為負極和陶瓷作為固態電解質的固態電池,具有更高安全性和能量密度。然而,在實際電流密度下金屬鋰進行沉積時,往往會穿透固態電解質并導致短路,這是制約其
2021-04-29 10:20:38
3712 
電池在可再生能源持續轉型的過程中發揮著不可替代的作用,特別是可充電鋰離子電池(LIB)日益成為消費電子、電網、航空航天和電動汽車等戰略新興行業的主導力量。基于無機固體電解質的全固態鋰離子電池(ASSB)可提供更高的安全性,更是下一代儲能產業有力的候選者。
2022-03-21 14:02:57
2330 作為固態鋰電池的重要組成部分,固態電解質的理化性質對固態鋰電池電化學性能的發揮至關重要。理想的固態電解質材料應具有高的室溫離子電導率、高的氧化電位、高的機械強度,同時對正負電極具有良好的界面相容性。
2022-03-31 14:13:08
2981 采用固態電解質代替易燃液體電解質可提高電池的安全性。近年來,已開發出多種固態電解質(SSEs),包括硫化物、氧化物、鹵化物、反鈣鈦礦和聚合物電解質(PEs)。它們中的某些離子電導率甚至高于液體電解質
2022-06-22 14:30:14
9322 在電解質-負極界面處引入保護層是解決上述問題的一種可行辦法,這在最近幾年獲得了學術界的廣泛關注。之前的研究中發現了LiF,LiI,ZnO和h-BN等材料可被用于穩定固態電解質和負極之間的界面
2022-08-11 15:08:49
3564 LLZO石榴石型固態電解質因為其較高的室溫離子電導率(10-4-10-3 S/cm),良好的電化學穩定性以及較高的力學強度受到研究人員的廣泛關注。但電池在室溫運行中,LLZO會被鋰枝晶穿透,從而發生短路。
2022-08-16 09:36:17
1652 對最近為高性能全固態鋰電池應用而設計的聚合物基電解質方法進行了回顧和討論。這里顯示了最新的不同設計方法,包括:將添加劑納入聚合物基體,聚合物基體的結構改性,以及鋰鹽分子設計。
2022-08-18 10:12:25
1587 在電池的制造及循環過程中,鋰金屬與固態電解質界面普遍存在著接觸不充分的情況,這些局部接觸位點通常被稱為“熱點”(“hot spots”)。這些熱點的局部電流密度通常比電池平均電流密度要高得多,因此鋰枝晶往往會從這些熱點部位開始往固態電解質內部滲透。
2022-08-31 11:10:57
832 氧化物固態電解質的主要優點是通用性強、穩定性高、壽命長、操作安全、無泄漏,可極大提高儲能鈉基電池的安全性能。
2022-09-16 09:33:24
3286 固態電解質內部的鋰細絲(枝晶)生長是造成電解質結構損傷、性能退化甚至內部短路的重要原因,嚴重限制固態鋰金屬電池的商業化應用。
2022-09-27 10:24:43
1457 固體聚合物電解質(SPEs)在固態鋰電池中有著廣闊的應用前景,但目前廣泛應用的PEO基聚合物電解質室溫離子電導率和機械性能較差,電極/電解質界面反應不受控制,限制了其整體電化學性能。
2022-09-28 09:46:27
3432 固態電解質材料主要包括三種類型:無機固態電解質、聚合物固態電解質、復合固態電解質。
2022-10-09 09:14:51
5438 固-固界面是高性能固態電池面臨的主要挑戰,固體電解質(SE)尺寸分布在固態電池有效界面的構筑中起著至關重要的作用。然而,同時改變復合正極層和電解質層的電解質尺寸對固態電池性能,尤其是高低溫性能影響如何,目前尚不明確。
2022-10-21 16:03:22
2993 多物理場作用下的多尺度載流子遷移行為至關重要
界面問題是固態鋰電池失效的關鍵原因
DFT和MD方法研究固態電解質構效關系
2022-11-08 10:42:48
1507 固態電池由于高比能和高安全性被認為是下一代鋰離子電池的候選者。固態電解質是固態電池的核心部件,立方石榴石型Li7La3Zr2O12(LLZO)固態電解質(SSE)因具有較高的離子電導率、較寬的電化學窗口
2022-11-24 09:23:32
1432 通過將SnO2納米線直接在集電極上制備和修飾制備圖案電極,并使用LLZO/ PEO復合電解質組裝成固態鋰離子電池。根據電極內部微觀結構的變化,系統地研究了對應電化學行為。研究者提出通過在圖案之間形成
2022-11-28 15:56:33
2555 固態電池與現今普遍使用的鋰電池不同的是:固態電池使用固體電極和固體電解質。固態電池的核心是固態電解質,主要分為三種:聚合物、氧化物與硫化物。與傳統鋰電池具有不可燃、耐高溫、無腐蝕、不揮發的特性。
2022-11-30 09:14:53
17740 固態電池的電解質為固態,能量密度高 固態電池內部沒有沉重的液態電解質,而是玻璃、陶瓷或其他材料形式的固態電解質。固態電池的整體結構與傳統鋰離子電池相似,充放電方式也大同小異,但因為沒有液體,所以電池內部更緊密,體積更小,能量密度增加。
2022-12-01 15:34:18
2246 全固態鋰電池因其高能量密度和更高的安全性,有望滿足下一代儲能技術要求。在所有的固體電解質中,硫固體電解質因其較高的離子電導率、較低的晶界電阻、加工簡單而受到越來越多的關注。
2023-01-10 09:28:34
2838 全固態電池具有安全、能量密度高、適用于不同場合等優點,是最有發展前景的鋰離子電池之一。硫化物固體電解質(SSE)因其良好的離子導電性和加工性而受到人們的歡迎。然而,由于SSE導體暴露在空氣中
2023-01-16 17:53:51
1928 NMC811正極與硫化物固態電解質界面分析。作者首先介紹了硫化物固態電解質(SSE)與氧化物正極接觸時形成的界面情況,發現即使在開路電壓下,硫化物SSE也會被氧化,這將進一步促進SSE和正極材料發生結構衰退。
2023-01-30 11:47:09
2203 高性能固態電解質通常包括無機陶瓷/玻璃電解質和有機聚合物電解質。由于無機電解質與電極之間界面接觸差、界面電阻大等問題,聚合物基固體電解質(SPE)和聚合物-無機復合電解質因其具有更高的柔性、更好的界面接觸和更易于大規模生產等優勢,被認為是未來全固態電池更有前景的候選材料。
2023-02-03 10:36:19
4141 什么是全固態電池? 如其名所示,全固態電池是構成電池的所有部件均是“固態”的電池。鋰離子電池等二次電池(可以充電、反復使用的電池)基本上由以金屬為材料的兩個電極(正極和負極)以及充滿其間的電解質構成
2023-02-21 11:10:45
9955 
聚氧化乙烯(PEO)固體電解質(SE)在全固態鋰電池(ASSLB)中是可行的,并具有駕馭電動汽車的高安全性。
2023-02-23 09:50:28
2155 固態電解質的開發有望從源頭上解決電池的安全問題,并進一步提高電池的能量密度。目前,多種固態電解質材料體系(聚合物、氧化物、硫化物、鹵化物等)被開發報道,固態電解質的離子電導率、電化學穩定性、機械強度等性能得到提升。
2023-03-16 09:07:39
1379 固態電解質的開發有望從源頭上解決電池的安全問題,并進一步提高電池的能量密度。目前,多種固態電解質材料體系(聚合物、氧化物、硫化物、鹵化物等)被開發報道,固態電解質的離子電導率、電化學穩定性、機械強度等性能得到提升。
2023-03-16 09:07:49
993 LiaMX4類電解質主要分為由二價金屬離子M構成的正尖晶石相,如Li2MnCl4、Li2ZnCl4等,以及由三價及其他價態金屬離子M形成的鹵化物電解質,如LiYbF4、LiAlF4等。早期合成的該類鹵化物電解質離子電導率較低且部分在常溫下無法穩定存在,使得LiaMX4類電解質研究的較少。
2023-03-20 10:24:24
5797 要點一:高壓固態電解質的概念,常見測試方法與高壓分解機制。文章針對高壓穩定的基礎概念與常見理論/實踐模型進行了討論(圖2)。此外,還對常用高壓穩定固態電解質測試方法進行了概述,為更準確、更規范評估高壓穩定固態電解質提出了見解。
2023-03-27 11:41:02
1566 基于無機固態電解質的金屬電池因其能量密度和安全性的優勢在電化學儲能領域具有巨大應用潛力。
2023-03-30 10:54:39
1052 在高鎳正極中引入多功能Ti2O3氧化物,并構筑NCM-12|LPSCI|Li固態電池體系。研究發現,引入的Ti2O3可調節NCM的電子及離子傳輸性能,且還能作為LPSCI電解質的保護體,與NCM中的活性氧結合,避免電解質的氧化和分解,并提升了電極/電解質界面在高電壓下的穩定性。
2023-04-09 09:28:25
2738 由于使用鋰(Li)金屬作為負極的潛力,固態電池(SSB)吸引了越來越多研究者的興趣。各種高性能固態電解質(SSE),包括聚合物、硫化物和氧化物的發現加速了SSB的發展。
2023-04-13 10:38:46
1352 
本文開發了一種異質雙層固態聚合物電解質(DSPE),并闡明其在室溫下的工作機理。通過分子動力學(MD)模擬提出了丁二腈(SN)與鋰鹽之間的分子間相互作用形成的[SN···Li+]溶劑化結構。
2023-04-15 15:08:04
3221 凝聚態電池和固態電池都屬于新型電池技術,但它們之間有幾個顯著的區別:
電解質形式:凝聚態電池采用液體或半固態電解質,而固態電池使用固態電解質。這意味著凝聚態電池的電解質可以流動,而固態電池
2023-06-08 16:51:37
3611 目前液體鋰電池已幾乎接近極限,固態鋰電池是鋰電發展的必經之路(必然性)。
與傳統液體電解質不同,對于固態電解質電化學性能的評價需要新的方法與評價維度。新發布實施的T/SPSTS 019—2021
2023-06-25 16:43:28
1259 
開發合適的固態電解質是實現安全、高能量密度的全固態鋰電池的第一步。理想情況下,固態電解質應在離子電導率、可變形性、電化學穩定性、濕度穩定性和成本競爭力等方面同時勝任實際應用需求。
2023-06-30 09:39:57
2305 
在全固態鋰電池(ASSLB)的開發過程中,固態電解質的應用取得了進展;然而,固態電極在兼容性和穩定性方面仍然存在挑戰。這些問題導致電池容量低、循環壽命短,限制了全固態鋰電池的商業應用。
2023-08-09 09:38:53
3201 
NASICON結構固態電解質(SSEs)作為一種非常有前途的鈉固態金屬電池(NaSMB)材料,由于其在潮濕環境中具有優異的穩定性、高離子導電性和安全性,因此受到了廣泛關注。
2023-08-23 09:43:42
2631 
今年以來,伴隨著電池企業的產能規劃落地和車企的裝車應用,固態電池領域產業化進程加快。
2023-08-28 10:41:21
673 
通過一種原位熔化反應,在電解質顆粒表面生成共價鍵配位,來解決固態電池的氧化穩定性差和枝晶的問題。
2023-09-05 10:14:32
5394 
固態電池作為一種新興的能源存儲技術,具有廣闊的產業化前景。隨著科技的不斷進步,固態電池將會得到更廣泛的市場化推廣與應用,并成為未來能源存儲領域的重要力量。
2023-09-05 11:24:12
6242 液態電解質的泄漏和易燃易爆等安全問題影響著鋰電池的應用場景。引入固態電解質如聚合物電解質可以改善此類問題,促進鋰金屬電池的實際應用。
2023-09-19 11:35:19
5328 
這篇研究文章的背景是關于固態鋰電池(ASSBs)中硫化物基固態電解質的界面穩定性問題。
2023-11-01 10:41:23
1890 
固態電池≠高鎳三元+硅基/鋰金屬負極+固態電解質
2023-12-09 14:52:54
1171 詳細介紹固態電池和半固態電池的優缺點。 一、固態電池的優點 安全性高:固態電池采用固態電解質,相對于液態電池的有機溶劑或聚合物溶液,具有更高的熱穩定性和較低的燃燒風險。固態電解質能夠有效阻隔陽極和陰極之間的
2023-12-25 15:20:02
13991 固態電解質在室溫條件下要求具有良好的離子電導率,目前所采用的簡單有效的方法是元素替換和元素摻雜。
2024-01-19 14:58:54
20143 
固態電解質中離子的遷移通常是通過離子擴散的方式實現的。離子擴散是指離子從一個位置移動到另一個位置的過程,使得電荷在材料中傳輸。
2024-01-19 15:12:27
3926 
聚合物,如固態電池,固態陶瓷和熔融鹽(如鈉硫電池)中使用的聚合物。 鉛酸電池 鉛酸電池使用硫酸作為電解質。充電時,隨著正極板上形成氧化鉛(PbO2),酸變得更稠密,然后在完全放電時變成幾乎水。鉛酸電池有溢流和密封
2024-02-27 17:42:11
2261 相較于傳統鋰離子電池,固態鋰離子電池安全性能高,無自然,爆炸的風險。氧化物和硫化物的電解質的固態電池能量密度高于采用相同正負極材料的傳統鋰電池。
2024-04-01 16:56:54
4070 
固態電池是一種使用固態電解質替代液態電解液和隔膜的新型電池。相比傳統液態電池,固態電池具有更高的能量密度、更好的安全性、更長的使用壽命和更快的充電速度等優勢。
2024-04-10 12:41:37
1019 
圓柱電池和固態電池是兩個不同的概念,它們分別描述了電池的形態和電解質的類型。
2024-05-06 17:34:35
1613 聚合物基固態電解質得益于其易加工性,最有希望應用于下一代固態鋰金屬電池。
2024-05-09 10:37:53
1438 
今年以來,各式各樣的半固態、全固態電池開始愈發頻繁且高調地現身,而背后均有氧化物電解質的身影。
2024-05-16 17:41:22
1574 固態電池是一種使用固體電極和固體電解質的電池,其內部完全沒有液體的存在,由無機物或有機高分子固體作為電池的電解質。這種電池技術相對于傳統的液態鋰電池具有顯著的優勢,以下是對固態電池概念的詳細闡述:
2024-09-15 11:57:00
4095 固態電池是一種使用固態電解質代替傳統液態電解質的電池技術。這種電池技術因其在安全性、能量密度和循環壽命等方面的潛在優勢而受到廣泛關注。以下是固態電池的優缺點以及與傳統鋰電池的比較。 固態電池的優點
2024-10-28 09:12:51
5630 的基本原理 固態電池的核心區別于傳統液態鋰離子電池在于其使用固態電解質代替了液態電解質。固態電解質可以是聚合物、氧化物或硫化物材料,它們在室溫下呈現固態,具有更好的熱穩定性和化學穩定性。這種結構上的變化使得固態電
2024-10-28 09:15:58
1891 的核心在于使用固態電解質代替傳統的液態電解質。這種固態電解質不僅能夠提供離子傳輸的通道,還能防止電池內部的短路,從而提高電池的安全性。固態電池的工作原理與鋰離子電池相似,都是通過鋰離子在正負極之間的移動來存儲和
2024-10-28 09:18:42
1822 電池之前,了解其基本原理是非常重要的。固態電池使用固態電解質代替傳統的液態電解質,這樣可以減少電池的體積和重量,同時提高能量密度。固態電解質通常由聚合物、氧化物或硫化物材料制成,它們在室溫下具有良好的離子導電性,
2024-10-28 09:20:13
766 解決的關鍵問題。 1. 固態電池的基本原理 固態電池與傳統的鋰離子電池的主要區別在于其電解質。固態電池使用固態電解質代替液態電解質,這可以提高電池的熱穩定性和機械穩定性,從而提高安全性。固態電解質通常由無機材料如氧化
2024-10-28 09:23:40
1896 為研究的熱點。 固態電池的基本原理 固態電池的核心在于其使用的固態電解質,這種電解質取代了傳統鋰離子電池中的液態電解質。固態電解質通常由無機材料(如氧化物、硫化物或聚合物)制成,它們在室溫下是固態,但在電化學性能上
2024-10-28 09:26:50
1817 的優勢在儲能系統中展現出巨大的應用潛力。 一、固態電池的基本原理 固態電池的核心在于使用固態電解質代替傳統的液態電解質。這種固態電解質通常由無機材料如氧化物、硫化物或聚合物構成,它們在電化學穩定性、離子導電性和
2024-10-28 09:30:47
1561 采用固體聚合物電解質(SPE)的固態鋰金屬電池(SSLMB)具有更高的安全性和能量密度,在下一代儲能領域具有很大的應用前景。
2024-10-29 16:53:29
954 
研 究 背 景 用固態電解質(SSE)代替有機電解液已被證明是克服高能量密度鋰金屬電池安全性問題的有效途徑。為了開發性能優異的全固態鋰金屬電池(ASSLMB),SSE通常需要具備均勻且快速的鋰離子
2024-12-31 11:21:13
656 
全性的全固態鋰金屬電池的最具潛力的候選電解質材料之一。 盡管如此,仍有大量研究表明,即使在較低的電流密度下(0.5-1 mA/cm2),全固態金屬鋰電池中鋰枝晶穿透硫化物固態電解質層導致電池短路的問題依然無法避免。這一問題通常被歸因于如下的一系列過程:鋰在電解質表
2025-02-14 14:49:02
319 
評論